
2024-03-31 Free Range Programming

Buggy Software	
2
Parsing with Ohm and PEG	
5
Sequentialism Gone Wild	
6
Making Everything Visible and Explicit	
9
Statement Sequencing	
10
Simplicity	
13
Appendix - See Also	 14

Free Range Programming 2024-03-31 1

Buggy Software

Q: Why do end-users need to protect apps from one another?

A: because programmers release buggy software and have successfully
conditioned end-users to pay for the privilege of using buggy software, and, have
conditioned end-users to act as free (actually negative expense) Q/A
departments.

Programmers have conditioned end-users to pay for expensive hardware and
software to be able to use buggy software.

Software was buggy 50 years ago.

Software is still buggy today, maybe even more buggy, and, the software culture
creates more attack vectors for criminality than was prevalent 50 years ago.

What's wrong with this picture?

Hand-waving arguments about "essential complexity" will not be accepted. The
point of researching these problems is to understand complex phenomena, then,
to explain the phenomena in simple-to-understand terms. Understanding the
phenomena, then explaining the phenomena in obtuse forms is not acceptable.

Free Range Programming 2024-03-31 2

BNF is Better Than Parser Combinators

The belief that parser-combinators are more composable than BNF, is basically
wrong.

It is more convenient to write mini-parsers in a DSL designed specifically for the
problem - BNF - and to stuff each one of those bits into separate processes.

It is plain easy to compose programs using processes.

We don't do this because it is mind-numbingly inefficient to use processes, today.

Why is this inefficient? Because of the forced use of function-based notation
which forces the use of preemption, which needs extra software to run it. In
addition, there are the heavy-handed concepts of MMUs and TRAPs to various
protection layers.

Let's say that you get fully deprogrammed from the cult of sequentialism. You are
given a choice of using parser combinators or process-based parser tidbits. You
would choose to use process-based parser tidbits in processes, because you can
snap them together like LEGO® blocks, whereas to snap parser combinators
together you face many more restrictions, like the requirement to always produce
a result even when you don't really want to (that whole "nil" problem, déja vu all
over again).

If you are still affected by the cult, you would eschew this solution because you
simply cannot "see" how this can be done efficiently.

Bizarrely, the cult itself, provides the answer - closures.

Processes are closures, but closures are cheaper, by a lot.

Basically, there is a huge chasm between the act of protecting apps from one
another and simply writing a single program.

You need heavy-handed processes and MMUs to wrap apps and keep them away
from each other - but - you don't need such heavy-handed approaches when you
are simply writing a program.

Free Range Programming 2024-03-31 3

Actually, protecting functions from one another by using processes might be a
useful tool for developers, but, is wildly inefficient for inclusion in production
code. Developers need different tools and machines than those that end-users are
willing to pay for. That's another issue in today's programming culture - the idea
that code shipped to end-users needs to use the same stuff as what developers
use, e.g. bloated operating systems.

Free Range Programming 2024-03-31 4

Parsing with Ohm and PEG

By the way, PEG - Parsing Expression Grammars - make BNF much easier to use.
PEGs are waaay better than REGEXs and waaay better than CFGs (for certain
quickie things).

My favourite PEG, today, is OhmJS (ohmjs.org). OhmJS makes PEGs much easier
to use.

Why?

Firstly, because OhmJS cleanly separates parsing from semantics. Most other
PEG libraries tangle the two concepts together. Tangled concepts produce
confusion, which produces bugs - and, worse - causes stoppage of being “in the
zone” (currently called “flow”, or, maybe “focus”). Flow is just as important in
programming as it is in sports. When you get into a flow state, you are more
productive. Anything, but, anything, will break you out of the flow state, hence,
will reduce your productivity. If you need to pepper your grammar with capture-
variable names, that interrupts your flow. If you try to read someone else’s
grammar and see it peppered with variable names and semantics code, you find it
harder - a lot harder - to understand what the other person intended. This is just
plain bad.

If you think that creating a new language needs to take more than an afternoon,
then you aren’t thinking “quickie”. REGEX used to be a compiler-only technology,
but, was promoted to quickie-use by its inclusion in programming languages, e.g.
Python, Javascript, PERL, etc. Ohm makes it possible to imagine using better-
than-REGEX technology for writing quickies. CFGs, like YACC make this idea
seem difficult and cumbersome, hence, when you think that you must use CFGs,
the idea of using true-blue parsing DSLs for quickie, knock-off bits of everyday
coding, gets summarily discarded.  

Free Range Programming 2024-03-31 5

http://ohmjs.org

Sequentialism Gone Wild

Here is a shining example of just how deeply ingrained sequentialism is in the
current programming culture.

We might write:

x = 5;

y = 6;

We know that the two statements are independent and can be executed in any
order, as long as x has 5 in it and y has 6 in it the next time they are used.

Now, let’s change the code to

x = 5;

x = 6;

We know that x = 5; is essentially useless and can be optimized away.

Why do we know that?

Compilers can perform this optimization only because the language guarantees
that x = 6; happens after x = 5; every time. We must rely on compilers to do this
extra work because the language does not allow programmers to say - explicitly -
what must happen in what order.

Actually, programmers can change the order of lines, but, there is a global cost to
using this kind of tricky, implied notation. Every line has sequencing built into it
under the hood.

Making this kind of low-level sequentialism implicit, implies that higher layers of
programming, also, need to follow this implicit rule while honouring
sequentialism, hence, it is harder to implement other kinds of code than is strictly
necessary. You have to break the assumption of implicit sequentialism to be able
to deal with the problem in some other way, using some other paradigm. Remove
global sequentialism and many other problems become much easier to solve.

Free Range Programming 2024-03-31 6

Going at it this way results in slow, ad-hoc progress. How many decades went by
before compilers were built to capitalize on this feature? To my recollection, it
took at least one decade, if not more for gcc to appear. When I got my first real
job in 1981, programmers programmed in assembler and scoffed at crazies like
me who pointed at High Level Languages, like C, as being the future of
programming. Gcc finally shut them up, but, that was almost a decade later. It
took even more time for other compilers to follow suit.

Let me emphasize: I'm not advocating for replacing one set of rules
(sequentialism) with another single set of rules (asynchronosity). I’m saying to use
both sets of rules and to let the Software Architect decide which set of rules best
expresses the paradigm-du-jour for solving each aspect of a larger problem
space. A problem is solved by nipping away at it using multiple paradigms.

Forcing the use of one and only one paradigm - sequentialism - is not the same
as multi-paradigm programming. If a programmer wants to apply a different
paradigm to solving some aspect of the problem, the programmer, first, has to
waste time creating work-arounds to break out of the ingrained paradigm.

Forcing the use one of only one paradigm results in a game of whack-the-mole.
The chosen paradigm solves one aspect of the problem beautifully, but results in
fugly work-arounds for solving other aspects.

One fugly work-around that jumps right out at me is the epicycle called
“preemption”, which brings with it baggage, like the hand-wringing about "thread
safety". Functional programming is the way to use CPUs for expressing compute-
ations, but is not the way to use CPUs for other kinds of problems.

There are other kinds of problems, and, those kinds of problems are becoming
more and more important.

It used to be the case that we could only imagine using CPUs for creating
ballistics calculators for the military, but, today, we need to deal with internet,
robotics, etc., all of which are not inherently compute-ations.

We keep proving - slowly and grindingly - that you can convert those kinds of
problems into compute-ations, but, we ignore the idea of proving that using the

Free Range Programming 2024-03-31 7

compute-ation paradigm is the best choice for those cases. Just because you
can do something one way, doesn't mean that you should do it that way.

The idea - and attendant tribulations, gotchas and baggage - of multi-core CPUs
is but a manifestation of sequentialism gone wild.

A good Software Architect's toolbelt contains many paradigms.

Starting every project with only one basic paradigm - sequentialism - ties the
Architect's hands and causes unnecessary work.

Paradigms should be free of one another, but, with the current crop of languages,
all paradigms are forced to boil down to a substrate layer of underlying
sequentialism.

CPUs are - by design - sequential, but, solutions are not forced to use CPUs
every time. For example, I look at the LED display of my laptop. I am hard-
pressed to imagine why I would bother to use a CPU in designing such a display.
Yet, the display is an integral part of the thing I call a "computer" [a bad name for
that thing, by the way, since I do a lot more with it than just compute-ing, e.g. I
move the mouse, which isn't inherently a compute-ation].

Free Range Programming 2024-03-31 8

Making Everything Visible and Explicit

Denotational Semantics is the idea of using Functional Programming to describe
the details of compilation.

It is important to note that “control flow” is handled in DS by supplying an explicit
parameter - the “environment” - to every function call in the DS specification.

It is this extreme explicitness that makes DS work.

It is the lack of this kind of extreme explicitness that causes subtle forms of
confusion in popular programming languages and projects.

Free Range Programming 2024-03-31 9

Statement Sequencing

At the language level, we see control-flow described by implicit sequencing of
statements - one after the other, with less frequent breaks in control flow
described by function calls and function returns.

In this diagram, the green arrows represent implied control flow. Note that when
function calls happen and returns happen, we can’t tell - simply by looking at the
text, what is meant to happen. Where does control flow go? How long will it take?
Are there other function calls hidden in those clouds? How many layers of
function calls are there in the parts that we can’t see?

This is an issue of locality-of-reference. You can’t tell what’s going to happen by
looking only at the visible part of the code, so you have to make up some rules
that you can rely on. For example, you must have a rule that says “no side effects
allowed” so that you can know that calling f(x) did not produce unexpected
control flows and did not produce unexpected data in unexpected locations.

But, side effects are what CPUs do for a living.

How can we deal with that reality?

One way is what we currently do - we simply decree that nothing bad can happen
when f(x) is called.

Another way, which is mostly ignored, is to turn the outgoing arrow from f(x) into
some kind of other arrow - a fire-and-forget arrow. Delete the wait-for-return
arrow and turn it into a sequencing-to-the-next-instruction arrow.

Free Range Programming 2024-03-31 10

Now, we can see all of the code involved. The decree becomes simpler - nothing
can interrupt the flow of the green arrows. Even when a red arrow shoots
something into the ether, we know that we don’t need to wait for a result and we
know that nothing can break our flow through this code, even if the red arrow
causes something to fire back at us. If we do get something fired back at us, it
doesn’t interrupt us, whatever it is just gets queued up for processing at some
unspecified time in the future.

‘Done’ doesn’t need to “return” anything, it just quits. If we want to “return”
results, we simply fire a red arrow. In fact, we can fire more than one red arrow,
or, we can fire absolutely no red arrows. That gets rid of the nil/maybe-
sometimes-nil issue.

Functions don’t work this way. Function-based programming, including the
current manifestation called FP (Functional Programming) doesn’t work this way.

State machines work this way. Actors work this way (unless implemented as
functions using the sequentialism paradigm). Statecharts work this way. 0D works
this way. In fact, the 0D paradigm can be thought of as communicating state
machines.

Broadcasting red arrows, willy-nilly to anyone interested in them becomes an
unscalable nightmare. The fix is easy. We just need to do what was done with
GOTOs. Invent Structured Message Passing. Guess what - somewhere in my

Free Range Programming 2024-03-31 11

blogs, I show an idea for Structured Message Passing. Somewhat ironically, we
see Structured Message Passing all around us every day. In successful
businesses, this concept is called “ORG Charts”.

Pub/sub is the idea of broadcasting, willy-nilly, to anyone interested in red arrows.
I expect the future of pub/sub to be lathered with more layers of work-arounds,
or, better, to have pub/sub simply wither away into obscurity.

Free Range Programming 2024-03-31 12

Simplicity

Q: Are today’s programming techniques causing simplicity?

Or, are today’s programming techniques causing complexity?

Have we progressed so much since 1950 in the field of programming that we can,
finally, provide guarantees on our software products?

Or, do we need to hide behind fine-print EULAs?

Real Engineering professions, like bridge design Engineers, are regulated by Law.
Real Engineers must put guarantees on their work (detailed designs) by affixing
their signatures / stamps on their products. If they break their guarantees, they
get sued, or, they go to jail.

Is programming there yet?

When Real Engineers face lawsuits and imprisonment, they think differently. They
design-in safety factors and big margins for error.

Real Engineering work products cannot be crashed by simple retraction of a small
part from “the internet repositories”.

Real Engineering work products don’t suffer huge spooky-action-at-a-distance
bugs caused by unexpected interactions when they, themselves, make slight
modifications to their designs.

Free Range Programming 2024-03-31 13

Appendix - See Also

Free Range Programming 2024-03-31 14

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Buggy Software
	Parsing with Ohm and PEG
	Sequentialism Gone Wild
	Making Everything Visible and Explicit
	Statement Sequencing
	Simplicity
	Appendix - See Also

