
2024-04-01 Free Range Programming

$PATH	
2
Lisp is Assembler	
3
Lisp is a Language for Programming With ASTs (Parse Trees)	
4
Projectional Editors	
6
Holm’s Prolog in Common Lisp	
7
Holm’s Prolog in Javascript	
8
Simplifying Assumptions and Maxwell’s Equations	
10
Appendix - See Also	 14

Free Range Programming 2024-04-01 1

$PATH

Shells should provide two $PATH-like environment variables for each project

1. The working directory for the project

2. A list of paths to libraries and tools used by the project.

We currently have ad-hoc collections of zillions of environment variables, and, we
have a disjoint thing called the “cwd”. Options and anti-normalization
(disjointedness) cause bloat, and, worse, bugs due to the possibility that every
edge-case has not been explicitly addressed.

Here, extreme explicitness would help clarify what is intended.

0D arrows - explicit control flow, like DS

$PATH - once per terminal, should be once per project

Free Range Programming 2024-04-01 2

Lisp is Assembler

Assembler is assembler with a line-oriented syntax.

Lisp is assembler with a recursive syntax.

Free Range Programming 2024-04-01 3

Lisp is a Language for Programming With ASTs (Parse Trees)

Simple parse tree:

(Node left right)

Lists are parse trees.

Lisp encodes all source code as lists in prefix-notation. The operator always
comes first, then the args. Usually, we think of the operator as “the function”. I’m
just using different words for exactly the same construct.

A Lisp program is a parse tree, where the first item is a “node” and the args are
branches below the node.

Lisp syntax allows nodes to be recursive. Parse trees contain nodes that are
recursive.

Lisp is a program written as a parse tree. A Lisp program skips over the “syntax”
bit and expresses the parse tree directly.

Non-lispers hate programming in Lisp because they prefer to have a machine
convert “syntax” into parse trees. Lispers don’t mind programming in parse trees.

To be accurate, the parse tree is actually a CST, not an AST. People tend to use
the term AST as an umbrella that includes CSTs.

ASTs are Abstract Syntax Trees.

CSTs are Concrete Syntax Trees.

ASTs encode all of the possibilities that can occur in a language.

CSTs encode only the parse tree of a specific program, shedding all of the other
allowable possibilities. CSTs are culled subsets of the full-blown ASTs.

ASTs are used to specify languages at the front end of compilers.

Free Range Programming 2024-04-01 4

When compilers parse actual programs, they convert the programs into CSTs, by
matching the input against the generalized specification given as an AST. The rest
of the compilation process is applied to CSTs.

When you write a compiler, you specify all of the possibilities in the language
using an AST. Then, you hang bits of code onto each node of the AST, telling the
compiler what to do when it sees something that matches the node.

When you actually compile a program with a compiler, not all of the semantic
nodes in the AST fire. Only the semantic nodes that match up with the input
program get fired. The nodes that do fire constitute the CST. If you were to
interrupt the compiler and get it to output the current version of the input program
as a tree, you would get a CST, since not all of the nodes in the full-blown AST
apply to the given input.

Most compilers are written using full-blown ASTs and you never get to see the
internal working CSTs.

Unless, of course, you are using Lisp, in which case you become the wetware
version the syntax-parsing phase of the compiler and you write the CST down as
Lisp “code”.

Free Range Programming 2024-04-01 5

Projectional Editors

It seems to me that projectional editors could use Lisp as their common internal
representation. One of the biggest tasks in projectional editor work is coming up
with an internal representation of the parse tree. We already know how to do that
- just write Lisp.

The other big task in projectional editors is mapping syntax onto parse trees and
v.v. mapping parse trees back into syntax.

It seems to me that such syntactical mapping can be facilitated, or at least
started, with PEG parsers. My favourite PEG language is OhmJS.

Mapping “syntax” onto “Lisp” is easier with OhmJS.

Mapping “Lisp” back onto “syntax” is less easy, but do-able. I’ve created a
Scheme to Javascript transpiler using OhmJS. My diary of doing this is in https://
guitarvydas.github.io/2020/12/09/OhmInSmallSteps.html. It helps to be able to
target a language that has anonymous functions / closures. Most modern
languages now have closures, so this isn’t such a big problem. The less “syntax”
in the target language, the better.

Yet, I’ve managed to transpile to Python, possibly the worst target language of
them all for this kind of task, due to Python’s non-recursive, indentation-based
syntax. The trick is to transpile into a pseudo-Python that has a context-free,
recursive syntax. Then, clean up and convert the pseudo-Python to real Python.

The most recent version of the Python indenter appears to be https://github.com/
guitarvydas/eh/blob/master/indenter.js.

In this version, I encode magic brackets as “(-“ and “-)”, then delete them for non-
Python target languages and calculate indentation when the target is Python.

Today, two years later, I would probably use Unicode characters for the brackets
and leave all ASCII characters otherwise open for use in the target languages.

The idea of using “(-“ and “-)” was that the lisp pretty printer in Emacs could be
used to indent generated code for eye-balling during development.  

Free Range Programming 2024-04-01 6

https://guitarvydas.github.io/2020/12/09/OhmInSmallSteps.html
https://guitarvydas.github.io/2020/12/09/OhmInSmallSteps.html

Holm’s Prolog in Common Lisp

I ported Nils Holm’s Prolog in Scheme to Common Lisp https://github.com/
guitarvydas/cl-holm-prolog.

The original Scheme source is in http://www.t3x.org/bits/prolog6.html.

I found Holm’s code and presentation to be easy to understand. In the past, I dug
into On Lisp, PAIP, and, the WAM tutorial https://github.com/a-yiorgos/wambook?
tab=readme-ov-file. I found Holm’s discussion easiest to comprehend.

In fact, I started building a WAM myself but veered off onto some other project
before fully finishing the WAM. It was beginning to work, but wasn’t completely
tested and debugged.The repo for the not-fully-tested, WIP WAM is https://
github.com/guitarvydas/wam/tree/master.  

Free Range Programming 2024-04-01 7

https://github.com/guitarvydas/wam/tree/master
https://github.com/guitarvydas/wam/tree/master

Holm’s Prolog in Javascript

I ported - automatically - Nils Holm’s Prolog from Scheme to Javascript.

I don’t use it much, since I just use SWIPL when I want to do exhaustive pattern
matching.

The repo for the JS version appears to be in https://github.com/guitarvydas/js-
prolog.

The port was done using OhmJS, as mentioned above.  

Free Range Programming 2024-04-01 8

https://github.com/guitarvydas/js-prolog
https://github.com/guitarvydas/js-prolog

Science and the Scientific Method

The scientific method is meant to be a fail-fast technology.

You ruthlessly attack a theory and nip it in the bud before it has a chance to
spread.

Scientists don’t create experiments to “support” a theory, instead, they create
experiments to tear down a theory.

You can’t prove a theory. You can only devise killer experiments that disprove a
theory. A single data-point can disprove a theory, while any number of data-
points cannot prove a theory.

The Michelson-Morley experiment is an example of good science. It disproved the
then-current theory of the ether. The experiment didn’t disprove the existence of
an ether, it only disproved that particular explanation of how ether works.
Strangely, it seems that the Michelson-Morley experiment has been misconstrued
to mean that no kind of ether exists. The experiment proved no such thing. The
Michelson-Morley experiment simply disproved one theory of ether, not the whole
concept of ether. Apparently, even Einstein believed in the existence of ether,
but, he used a different word for it - he called ether “space”.  

Free Range Programming 2024-04-01 9

Simplifying Assumptions and Maxwell’s Equations

Physicists learn, at an early age, to reduce a search space by applying
“simplifying assumptions”.

Applying simplifying assumptions makes it possible to deep-dive into a single
aspect of a phenomena and to understand it in depth. Hopefully, after
understanding the details of an aspect of the phenomenon, a simple explanation
can be given.

Maxwell’s Equations are an example of a useful set of simplifying assumptions.
The equations ignore niggly details about the phenomenon of electricity and
create a “simpler” explanation of a slice of the phenomenon.

That slice of electrical phenomena allows us to build useful gadgets using
electronics. On the other hand, deep-thinkers like Robert Distinti are showing
that Maxwell’s Equations don’t deal with all of the actual niggly details of the
electrical phenomenon, and, that re-introducing those details into our equations,
can lead to a deeper understanding of physics, itself.

A “simplifying assumption” is the idea of tossing out niggly details while
considering some aspect of a phenomenon. In physics, a simplification is
considered valid if its effects swamp out the effects of the niggly details, by an
order of magnitude. This is written as “X >> Y”, meaning that the effect of X is 10x
more important than the effect of Y - for exploring some aspect of the
phenomenon. If “X >> Y” does not hold, then the simplifying assumption is
invalid, and the exploration needs to be re-thought. Usually, one can chip away at
a phenomenon by finding multiple simplifying assumptions that are valid, and,
describing aspects of the phenomenon is detail, while remembering that
simplifications have been made. This is, also, called “divide and conquer”.

In software, we see a very similar thing going on, but, we also see that simplified
ideas are accepted as reality, instead of being thought of as only being slices of
understanding.

For example, FP - Functional Programming - is a good simplifying assumption, for
creating calculators, like complex ballistics calculators for the military. FP, though,
is not convenient for describing the programming of computers for sequencing

Free Range Programming 2024-04-01 10

applications, eg. iMovie, mouse handling, GUIs, robotics, blockchain, etc. This
doesn’t mean that FP is bad, it only means that the simplifying assumptions are
invalid, and, that some other notation - programming language - should be used
along with FP.

FP doesn’t describe programming, it only describes a slice of programming.

FP uses the simplifying assumption of ignoring time. The idea of ignoring time is
OK for time-less concepts, like compute-ing results, but, does not apply -
conveniently - to other concepts, like sequencing things (timestamps, timeouts,
state machines, etc.).

So, how do you handle these other kinds of concepts, like sequencing? You
invent other simplifying assumptions and invent notations based on those
simplifying assumptions. Can these new simplifying assumptions be used for
expressing compute-ations? Nope, they are not as convenient to use as the FP
simplifying assumption for such purposes. You need to use multiple notations.
Trying to force all simplifying assumptions into a single notation - programming
language - cannot possibly work, in the end. The result is a watered-down version
of one, or of all, concepts.

The idea of building “general purpose” programming languages is basically
misguided. You need multiple “special purpose” programming languages. We see
this beginning to happen with concepts like DSLs, but, we can do even better.

We were held back by the realities of primitive computer hardware in the 1950s.
Early machines were too expensive and too difficult to use, and, programming-
language implementation was too infantile, so we needed to create unions of
simplifying assumptions to reduce costs.

Today, though, reprogrammable electronic machine hardware (aka “computers”)
are inexpensive (Arduinos, Raspberry PIs, etc.) and memory is ridiculously
abundant and cheap - we don’t even bother to measure memory in terms of bytes
and Kb, we think in terms of Mb and Gb regularly.

Programming languages, though, that we use today are all based on 1950s
biases. We need programming languages that address, in new ways, the new
realities of our current hardware.

Free Range Programming 2024-04-01 11

In 1950, it was a stretch to think about anything but tiny bitmaps arranged in
tight, non-overlapping grids (i.e. characters and ASCII and EBCDIC). Today’s
hardware can handle scalable graphics and multi-byte encodings of fundamental
atomic elements (Unicode, HTML, etc.).

Thinking in terms of tiny, non-overlapping grids of bitmaps brought us CFGs
(Context-Free Grammars). Now, we have PEGs (Parsing Expression Grammars) .
1

We haven’t yet really opened the Pandora’s Box that PEGs can bring to us.

In the early days of computing, there was a concept called “syntax directed
translation”. Today, there is a concept called “pattern matching”. They are,
essentially, the same idea.

Instead of “if-then-else”, use a parser to determine control-flow. It used to be
difficult to build parsers, but, today, with PEGs it’s quite easy to build parsers.
Software components can “talk” to each other using little-DSLs . The little DSLs 2

need only be machine readable, and not be constrained by the restrictions of
human readability. And, we can have zillions of little DSLs, essentially one unique
little-DSL for each software component.

Has this idea been tried before? Yes. PT-Pascal was built this way. Concurrent
Euclid was built this way . Even gcc uses this idea - it compiles to a little-DSL 3

called “RTL” - a “virtual machine syntax”. UNIX® pipelines are based on this idea,
although the “little-DSL”s are usually constrained to be lines of text separated by
a magic character (newline).

In fact, REGEX is a little-DSL designed for matching characters. Its syntax leaves
a lot to be desired, but, it is a little-DSL, nonetheless. And, it is a little-DSL that
co-exists, syntactically, with other programming languages.

 In fact, we’ve always had PEGs, but used a different name for them - “recursive descent”. 1

PEG technology makes this kind of thing much more accessible and convenient to use.

 I use the name “SCN” instead of “little-DSLs:. Solution Centric Notation. I will continue to use 2

the term “little-DSL” in this essay, though.

 I strongly suspect that the languages Turing and Turing+ were built this way, but, I don’t have 3

direct experience with their implementations.

Free Range Programming 2024-04-01 12

We’ve been using little-DSLs without realizing it. GDB has a little-DSL built into it
directed at the needs of debugging.

The C preprocessor is a little-DSL unto itself that deals with textual substitution of
preprocessor code into C code. The resulting C program is machine-readable,
but, not very human-readable, which is OK, since few humans actually bother to
look at the output of the C preprocessor.

We think in terms of “composition” of software components at runtime or
compile-time. PEG allows us to think in terms of “syntactic composition”.

Free Range Programming 2024-04-01 13

Appendix - See Also

Free Range Programming 2024-04-01 14

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	$PATH
	Lisp is Assembler
	Lisp is a Language for Programming With ASTs (Parse Trees)
	Projectional Editors
	Holm’s Prolog in Common Lisp
	Holm’s Prolog in Javascript
	Simplifying Assumptions and Maxwell’s Equations
	Appendix - See Also

