
2024-04-03 Free Range Programming 

Goal	 
3
Normalization	 
4
Slip - TDP Timing Dependent Programming	 
6
Syntactic Composition	 
7
Rules of Message Passing (0D)	 
8
RWR - Text Rewriting	 
9
DI - Design Intent	 
10
IR - Intermediate Representations	 
11
RT	 
14
Appendix - See Also	 16

Free Range Programming 2024-04-03 1



Free Range Programming 2024-04-03 2



Goal


The main question that I’m interested is is: Why is programming software so 
hard? What can be done to simplify it - drastically (10x or more simpler)?


I believe that we are working in a realm of FoPoC - Future of the Past of Coding.


To grease the creative juices and to attack FoP - Future of Programming - with 
greater speed and fluidity, we need more convenient notations for programmers 
that don’t brain-lock them into a single paradigm. 


Current PoC - Past of Coding - dictates that everything must start out using the 
synchronous paradigm (aka “sequentialism”). This paradigm is good for building 
calculators, like complex ballistics calculators for the military. But, this paradigm 
discourages thinking along the lines of time-based operations, like DAWs, iMovie, 
Visual Programming, Actors, internet, concurrency, robotics, etc., etc. It is 
possible to force the synchronous paradigm onto these other kinds of problems, 
but, it is inconvenient and, thus, discourages rapid advancement in these 
directions. The fact that we need to use preemption is a tell that we’re forcing an 
ill-fitting notation onto problems.  

Free Range Programming 2024-04-03 3



Normalization

- normalize to simplify


- Eschew complications, like data structures, magic characters, over-
specification of details (until we need to deal with such details), etc.


- Example: UNIX® File Descriptors - everything, including devices, look like 
“files” and can be manipulated through the same, simple interface: open(), 
close(), read(), write(), etc.


- UNIX revolutionized programming, especially Operating Systems


- UNIX® provided a relatively small, but highly reusable tools for text 
processing


- The lessons of UNIX® have essentially been forgotten for statement-level 
programming, due to UNIX®’s association with operating systems


- UNIX® processes are merely clumsy implementations of closures (see 
Greenspun’s 10th Rule). All modern languages implement closures, so we 
don’t really need bloated operating systems any more.


- Example: UNIX® pipes


- Pipes for text rely on a magic character (newline) -- an unnecessary 
complication which constrains thinking. Most UNIX® commands are meant to 
manipulate text, but, at lower levels, UNIX® processes can manipulate other 
kinds of non-textual data. Then, there’s the question of “why bother?”, 
maybe t2t (text to text) is “good enough” for most of our problems. Function-
based programming (of which, FP, is only a subset) conflates the issues and 
makes it harder to imagine more innovative uses for programs. If you choose 
to use a CPU, you must deal with it on its own turf - i.e. sequentialism. This 
does not mean, though, that your higher level notation needs to be 
sequential. 


- /bin/sh, /bin/bash, /bin/zsh, etc. understate the power of the “pipe” 
normalization, due to insufficient syntactic power (i.e. textual, stdin, stdout, 
stderr


Free Range Programming 2024-04-03 4



- Needs a Visual syntax - VSH (Visual SHell)


Free Range Programming 2024-04-03 5



Slip - TDP Timing Dependent Programming

 

Free Range Programming 2024-04-03 6

A

B

C

D

C & D Fire
but we don't know
in which order

A

B

C

D

C & D Fire
it is guaranteed that
C fires before DE F

Q

R

X

Y

Y is guaranteed
to fire only after,
both, W and X fire,
but, the order in which
W and X fire is indeterminate

U V

P
W

S T

q

r

x

y

x is guaranteed
to fire after w,
y is guaranteed to
fire after x

u v

p
w

s t

nm

What are the little boxes called?
Hesitate, lull, rest, stutter, slip, clutch,
decoupler, slip ring, skid



Syntactic Composition

- normalize all communications between components to be “little languages” (as 

strings)


- Use OhmJS to inhale and parse incoming strings.


- Convert the parsed info into internal data structures and internal 
representations that are useful for solving one slice of a problem.


- Solve the sub-problem, exhale another “little language” as a string to the 
downstream components in the pipeline.


- For example, a compiler:


- Pass 1: Scanner - inhale human-readable text and parse it with OhmJS 
(syntax #1), tokenize it and exhale a machine-readable little language 
containing tokens. The exhaled little language does not need to look “nice” 
to humans, it just needs to look “normalized” to the OhmJS parser in pass 
2.


- Pass 2: Parser - inhale little language containing tokens and parse using 
OhmJS (syntax #2) and check that the tokens constitute valid syntactic 
sequences, i.e. check for “syntax errors”


- Pass 3: Semantic analysis 1 - use OhmJS to parse incoming text (syntax 
#3), then, gather up declarations and create an internal symbol table. 
Exhale a different little language that is annotated with symbol table 
information.


- Pass 4: Semantic analysis 2 - use OhmJS to parse incoming text (syntax 
#4)  

Free Range Programming 2024-04-03 7



Rules of Message Passing (0D)

- Containers


- Leaves


- SMP - Structured Message Passing


- See “Org Charts”


- Down, up, across, through


Free Range Programming 2024-04-03 8



RWR - Text Rewriting

- simpler form of Term Rewriting  

Free Range Programming 2024-04-03 9



DI - Design Intent


The goal is to communicate design - quickly and easily.


The goal is to allow push back on the design and, if someone likes the design 
ideas, to steal the ideas and to reuse them elsewhere.


A notation is measured by how easily it communicates ideas between humans.


If you want to communicate scripts to CPUs, you must use assembler. Period. By 
definition. 


Haskell, for example, ultimately compiles down to assembler. The CPU doesn’t 
care that you used Haskell. You, and other developers, are the only ones who 
care that you used Haskell.


Can we come up with alternate notations from Haskell for communicating 
between humans?


Can we use more than one notation for communicating between humans? For 
example, using Haskell for expressing complex calculations (military ballistics, 
crypto) plus using StateCharts for expressing scripting recipes plus PEG for 
expressing text parsers. Maybe more notations? A 2-type language for playing 
around with ideas and refining them incrementally vs. a zillion-type, static 
language for expressing optimization and Production Engineering.


It seems that the first choice of just about everyone is to use sketches drawn on  
napkins at diners, or, whiteboards in meeting rooms.


Can we make it such that those sketches contain enough “high level detail” to be 
refined into scripts for running machines? 


Can we preserve provenance from the original airy-fairy sketches down to the 
actual scripts that are fed into machines? 


Code is cheap, thinking is hard.


Free Range Programming 2024-04-03 10



IR - Intermediate Representations

With respect to the arith0D demo repository (Python POC: https://github.com/
guitarvydas/0D/tree/devpy/python/test and Odin: https://github.com/guitarvydas/
arith0d)...


The ultimate goal is to use Python/JS/CL/WASM as assemblers and never have to 
bother writing in such low-level 3GLs again.


The IR should be an HHL (higher-than-high-level language) that should allow easy 
machine manipulation and should allow easy transformation into other syntaxes. 


Syntaxes are cheap, paradigms are hard.  

Free Range Programming 2024-04-03 11

CL

To Common Lisp

✗

✗✗

Read Text File

✗

To Javascript

✗

JS

To Python

✗

Python

To Wasm

✗

Wasm

https://github.com/guitarvydas/0D/tree/devpy/python/test
https://github.com/guitarvydas/0D/tree/devpy/python/test
https://github.com/guitarvydas/arith0d
https://github.com/guitarvydas/arith0d


Clojure is wildly more complicated than Lisp-without-macros. For example, in 
Lisp, you write recursive syntax using parentheses, in Clojure you need 
parentheses and square brackets (that's 100% more complicated :-).


The IDEs for Common Lisp are much more mature than the IDEs for any modern 
language, including Clojure. A significant portion of the goodness of Lisp has 
been lost due to the push for static compilation and type checking. The 
“dynamic” parts of Lisp, and the REPL, are good for iterative design refinement, 
whereas static compilation is good for Waterfall development of super-optimized 
code for Production Engineering activity. A REPL for a statically-typed-and-
compiled compiled language isn’t even close to being as useful as a REPL for a 
dynamically-typed language (or, even an untyped language, if you wish).


Ideally, the IR should allow you to work with any language and IDE, so it should 
just be a matter of choice and familiarity.


I haven't settled on anything yet, but, I admire Sector Lisp and OhmJS for their 
simplicity.


OhmJS makes it possible to use just about any syntax, not just that of Lisp.


The advantage of Lisp's "syntax" is that it allows recursive expression of syntax. 
I.E. Recursion at the syntactic level, not just at the runtime level. And, it is easy to 
parse using ad-hoc techniques (recursive descent) or tools like OhmJS and PEG. 


Recursive syntax is especially easy to parse with OhmJS (and other PEGs) 
because PEG can parse matching brackets. CFGs, like YACC and stuff in the 
Dragon Book, make it cumbersome to parse that kind of stuff. REGEX is even 
worse - it lulls you into thinking that you can parse stuff with it, but, ultimately 
wastes your time when you try to scale up to more interesting grammars.


Additionally, in PEG, you can say "and skip this stuff as long as the brackets 
match", whereas in CFGs, simple ideas like that turn into mega-projects which 
tend to be avoided.


Free Range Programming 2024-04-03 12



I think that Lisp has zero (0) syntax. Lisp is assembler with a recursive syntax, 
whereas Assembler is assembler with a line-oriented syntax (flat, non-recursive 
syntax).


In Lisp, you are forced to write programs by writing ASTs. Some people love this 
freedom, others hate it.


Free Range Programming 2024-04-03 13



RT

I began thinking about an über-syntax - an “IR” if you wish - that I was tentatively 
calling “RT” (Recursive Text). 


I haven’t settled on any yet, but, I currently think that it will take the form:


	 ⟪operator operand operand...⟫


Where the brackets are hard-chosen to be Unicode, to leave valuable ASCII 
characters alone. Unicode has so many characters that we can afford to choose 
some and assign fixed meanings to them, without using up valuable character-
space real-estate.


Note that Ohm (PEG) allows parsing arbitrary strings of characters (as long as 
there is something unique in the strings, to differentiate them), so we might write 
stuff like:


	 ⟪I want a hamburger with 2 patties and ketchup and mustard⟫


Where italics are use to represent operands. The above phrase might be 
transpiled into:


	 kitchen.order (burger, 2 * patty, [ketchup, mustard])


Which might be further reduced to something like:


	 (order kitchen (‘burger (* 2 ‘patty (list ‘ketchup ‘mustard))))


The fact that OhmJS can be used to parse XML / HMTL / etc. might gives us 
syntax like:


which looks - in machine-readable text form - as:


<mark>I want a</mark> <i>hamburger with 2 patties</i> <mark>and</mark> 
<I>ketchup</i> <mark>and</mark> <I>mustard</i> 

Free Range Programming 2024-04-03 14



And, of course, we could parse even more interesting syntaxes composed only of 
HTML (and CSS) or project-specific syntaxes based on XML / HTML / etc.  

Free Range Programming 2024-04-03 15



Appendix - See Also

Free Range Programming 2024-04-03 16

See Also 
References https://guitarvydas.github.io/2024/01/06/References.html 
Blog https://guitarvydas.github.io/ 
Blog https://publish.obsidian.md/programmingsimplicity 
Videos https://www.youtube.com/@programmingsimplicity2980 
[see playlist “programming simplicity”] 
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join) 
X (Twitter) @paul_tarvydas 
More writing (WIP): https://leanpub.com/u/paul-tarvydas 

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Goal
	Normalization
	Slip - TDP Timing Dependent Programming
	Syntactic Composition
	Rules of Message Passing (0D)
	RWR - Text Rewriting
	DI - Design Intent
	IR - Intermediate Representations
	RT
	Appendix - See Also

