Paul Tarvydas

GEPTRE
-WALKTHROUGH OF
THE DUNGEON
CRAWLER EXAMPLE

Based on the paper: Ceptre: A Language for
Modeling Generative Interactive Systems

THE PAPER
T

https://www.cs.cmu.edu/~cmartens/ceptre.pdf

Source code for a more involved version of RPG:

https://github.com/chrisamaphone/interactive-lp/blob/master/examples/rpg.cep

https://www.cs.cmu.edu/~cmartens/ceptre.pdf
https://github.com/chrisamaphone/interactive-lp/blob/master/examples/rpg.cep

AGENDA

- o — -

e A e e e e e ———— : M- e
e | will look at only the bits of code circled in red
R war MUPUTUN — T - L= L1 1T

T i o e 4 bt e
prrard vl lnah te wmend png v

1 Sevagng ¥ ov own toonbemtmd vy s et &
—

e ot e s e
Aekes e Rabnets

oo ofrs 4 o e v B Aok S
b w4 s o o e o .4

b . The vy o alling . & 0 oy
T T T i
b

- T ———
e o o g b S § o4 - o -

O e Tt o ke e ft ot 4 g
e v e e @
e ———— Provts s Trace

S0 o 0 vemmd s 4 00 g
el s

v e e g s Gy e 8y e

e A4 g et o . e # e gt e

Skt it s 0 syt o of g
-

— S, | 3005 S mehems e ey s e N, A, ok S, € K Gl 3 g
ey pretiy s = g o Al R 5 e e B bt b bt st s 7
ey g rereilyg— oy o . Pdiogs o o et ot
= o W Lovn 5, G & M, ek, Thompum, o A g 5510 0 108130
Agmage LN Vint

P
o g o 8 bt g s P o o SO0
——, .

lo—
P -
e e— o Prveings o e 198 ANV
(b o o bt o

. S - 0 Do g -

- VO
m\u(.--——--uvi:—-
- s s i 30 et Gt -

pomttuy btbutioy
Mo, Wl S, A, W Fugule s e
ot e ama. i i St

| view the code from the perspective of thinking of Ceptre as a language for writing practical

gaming software, instead of as a way to formally analyze the required operations.

GEPTRE

s

..,_{m};:;&, -

3

.
[0 g/' e P
- %

non

Ceptre uses formal logic (“linear logic”, “multiset rewriting”)
to describe low-level operations and higher-level

operations.

Ceptre uses the same syntax throughout.

Ceptre operates on one stage at a time.

It finds enabled rules, then applies one rule to the factbase.

The choice of which rule to apply is nondeterministic. If the rule is marked “interactive”, then the player gets to choose which

rule to apply, else, the system chooses a rule randomly.

This process repeat until no rules are enabled, i.e. the stage is “quiescent”.

Higher level rules can match for a quiescent stage using the qui operator.

ieptre 2.pdf

'age 5 of 7

1111U111 vaiuv ad a PlUULbaLC bPJ.l vUv

read as A plus B capped at Cap 1S on of

the predicate for brevity, but makeWs. We }

also use backward-chaining predicates to define a few con- qu

stants, such as the player’s maximum health and the damage o

and cost of various weapons: £i
max_hp 10. damage sword 4. cost sword 10. gl

We then define a initial context and an initial stage that
sets up the game’s starting state:

context init_ctx = {init_tok}.
stage init = {
i : init_tok * max_hp N
-0 health N * treasure z * ndays z * weapon_damage 4.

}

We define the rest of the game using a “screen” idiom,
with predicates representing the main, rest, adventure, and
Shop screens. (Some type hepf'!qxt: anfarmatinn 1o.armattad)\ Lo, .

qui * stage init -o stage main * m

stage main = {

L max_hp (10)
' damage (sword, 4)

stage (init)
init_tok

D ¥ a—
S, N—

cost (sword, 10)

..

Caption

eoe M~

ceptre 2.pdf
Page 5 of 7

®©O aa 2 - 0 6 Qv

also use backward-chaining predicates to define a few con-
stants, such as the player’s maximum health and the damage
and cost of various weapons:

max_hp 10. damage sword 4. cost sword 10.

We then define a initial context and an initial stage that
sets up the game’s starting state:

context init_ctx = {init_tok}.
stage init = {
i : init_tok * max_hp N
-o health N * treasure z * ndays z * weapon_damage 4.

}

We define the rest of the game using a “screen” idiom,
with predicates representing the main, rest, adventure, and
shop screens. (Some type header information is omitted.)

qui * stage init -o stage main * main_screen.
stage main = {

do/rest : main_screen -o rest_screen.

do/adventure : main_screen -o adventure_screen.
do/shop : main_screen -o shop_screen.

qui *
try_f£
fight

stage
fig

win
fig
die

fig

choic
qui *
qui *
qui *

Ceptre code stage init

TR PRI o e s o AR &
Y O -3, 4,@.\\ — > T ek e o
Sapre S W g .

init_tok removed

max_hp (10) [stage (init)]
 damage (sword, 4)

cost (sword, 10)

heath (10)

treasure (0)
ndays (0)

:weapon_damage (4)

New predicates added

Init rule |

max_hp (10) | stage (inity |
 damage (sword, 4) |

: cost (sword, 10) f
When no more rules can be enabled :) g L heath (10)

(matched), insert qui into the factbase. r treasure (0)

ndays (0)
' weapon_damage (4) |

[qu J

..

M~

ceptre 2.pdf
Page 5 of 7

®@ a Q

h 2 - 0 o Qr

We define the rest of the game using a “screen” idiom,
with predicates representing the main, rest, adventure, and
shop screens. (Some type header information is omitted.)

qui * stage init -o stage main * main_screen.

stage main = {

do/rest : main_screen -o rest_screen.

do/adventure

: main_screen -o adventure_screen.

do/shop : main_screen -o shop_screen.

do/quit : main_screen -o quit.

}

#interactive main.

qui stage main
qui
qui

qui

stage main
stage main
stage main

* ¥ ¥ *

*
*
*
*

$rest_screen -o stage rest.
$shop_screen -o stage shop.

A A A A

A A % Lo

$adventure_screen -o stage adventure.

quit -o Q).

The rest and shop stages allow recharging health (at the ar
cost of an increment to the number of days) and upgrading ,
one’s weapon damage in exchange for treasure, respectively:

- -~ r

Caption

IF state (init) IS quiescent then {

Remove stage (init) from FB
Remove qui from FB

AND

Insert stage (main) into FB
Insert main_screen () into FB

...

max_hp (10)

: damage (sword, 4)

cost (sword, 10)

heath (10)

treasure (0)
ndays (0)

:weapon_damage (4)

stage (main)

main_screen

L] .

Caption

GAME DESIGN INTENT
| —

The game used in this example is quite simple, as far as games are concerned. The intent behind this example is to show
a various techniques for designing games..

The following pages are freehand sketches that give my best understanding of the design of the game. | choose to
explain the design using a set of layers.

Later, | will describe the Ceptre code in terms of these sketches.
Legend:

e p.ok is the player’s health, when it drops to 0, the player dies and the game can be restarted afresh, referred to as the
predicate health N’ inthe Ceptre code

e p. S is the player's money, referred to as the predicate ‘treasure N’ inthe Ceptre code

e p.pwr is the player's weapon'’s power, referred to as the predicate ‘weapon damage N’ inthe Ceptre code
e spoils isthe $'s awarded to the player for defeating a monster,

e ndays is a score - the "number of days” that have transpired in the game

e m.ok is the monster's health in a fight, when it drops to 0, the player wins the fight, referred to as the predicate 'health
N’ in the Ceptre code

e m.pwr is the amount of damage a monster can inflict in one blow to the player in a fight, referred to as the predicate
‘monster Size’ inthe Ceptre code

e m. S is the amount rewarded to the player when the monster m has been vanquished, referred to as the predicate
'‘drop amount Size Drop’ inthe Ceptre code

e z is zero (Church numerals are used in some of the bwd predicates in the larger rpg.cep code).

The game begins with a cold start - some variables are

initialized, then the main loop is entered.

The player must choose from 4 courses of action “adventure”,

" n non

"shop”, “rest”, "quit”.

When the player wins or dies, the game begins again with a
cold start, and, in all other cases, the loop repeats without

reinitializing the top-level variables.

— gt

]

choot

Mav X §

If the player chooses “rest”, the
player’s health is restored to a

maximum value, but, 1 day is lost.

If the player chooses “shop”, the
player is given the option to exchange
some $'s for more powerful weapons,

if the player has enough $s. The

player can leave the shop at any time.

X (&= wea(ou.zod'

Adventure kicks off a round of fighting. The amount of $'s to be collected when the player wins a
battle, is reset and a new monster is generated, then the fight loop is entered.

The adventure can end in one of 3 ways
e The player wins the game (all monsters have been vanquished)

e The player loses the game ('dies’)

e The player flees from the current battle and foregoes all winnings in a given round of fighting, the
game continues with a warm start.

Layer Fight

Fight runs the fight loop by repeatedly calling invoking “fight auto” and performing

health decrements as required.

Layer Fight Auto

Pt

Fight auto runs the fight loop.

Fight auto returns 1 of 5 possibilities: a hit value, a miss value, a die event, a win event, a flee event.

Layer Fight Step

A
QQ\QN ﬁj(@f evouh)

Q-0k 20
m-ok- >0

.

rand

[guck—>

Fight step picks a hit or a miss at random, then produces a “win” or “hit value” event, or, produces a
“die” or “miss value” event.

Layer Flee

e
WAY

- sduc

The player foregoes all $'s dropped by the monster and goes back to the main loop.

The player has slayed one monster and the player is given a choice of going back to

the main loop or fighting another monster.

The player lost the game (player’s health has dropped to 0). The player can play again

or quit the game.

CEPTRE CODE
|

The following section examines the actual code presented in the paper and

compares it with the Design Intent.

Code Layers Init and Main

qui * stage init -o stage main * main_screen.

stage main = {
do/rest : main_screen -o rest_screen.
do/adventure : main_screen -o adventure_screen.
do/shop : main_screen -o shop_screen.

do/quit : main_screen -o quit.
}

#interactive main.

In the main loop of the game, four rules are (always)
enabled, since each rule consumes amain screen

predicate.
The player is asked to pick one of the rules.

The rules simply drop “screen” predicates into the FB
(factbase). The stage becomes quiescent. Upper-level

logic then determines which transition to take.

In stage rest, player’s health recharges, but, ndays is incremented

WoYm

St

- - - - - - e e Y

stage rest = {
recharge : rest_screen
* health HP * max_hp Max * recharge_hp Recharge
* cplus HP Recharge Max N
* ndays NDAYS
-o health N * ndays (NDAYS + 1).
}

qui * stage rest -o stage main * main_screen.

Logic Variables

HP
Max
Recharge
N
NDAYS

N := max (Max, HP + Recharge)
FB += health (N)
FB += ndays (NDAYS + 1)

backward-chaining predicates. For instance, we can define
the arithmetic operation of addition capped at a certain max-
imum value as a predicate cplus A B Cap C which can be
read as A plus B capped at Cap is C. We omit the definition of
the predicate for brevity, but make use of it in later rules. We
also use backward-chaining predicates to define a few con-

Cplus predicate

Code Layer Shop Stage

In stage shop, the player can buy more weapon power, if the player

has enough $.

stage shop = {
leave : shop_screen -o main_screen.
buy : treasure T * cost W C * damage_of W D * weapon_damage
* subtract T C (some T’)
-0 treasure T’ * weapon_damage D.

X
#interactive shop.
qui * stage shop * $main_screen -o stage main.

Definition of subtract {
T-C=+veintegeror0
T - C = none otherwise

letT=p.$in)
let W = any weapon (retry-able)

let C = cost of the given weapon
let D = power of the given weapon
If a weapon can be found that satisfiesT-C >=0 then

enable { , ;- :
orompt “buy” The rule "buy’ is enabled only if
remove treasure predicate with value T the player has enough $, ie.

remove cost predicate with values W and C

remove damage of predicate with values W and D

remove weapon damage predicate without regard for its value

insert treasure T’ where T'=T-C

insert weapon damage D (effectively overriding previous weapon damage)

(some T'’) is not none.

WAY
asduc

Win
\i¢z stage adventure = {

PIPPS M~ ceptre 2.pdf ® Q @ [i] 2 |~ [i\ ® Q-

Page 5 of 7

init : adventure_screen -o spoils z.

}

qui * stage adventure -o stage fight_init * fight_screen.

o0 [coptrezpd © aa dh 2 - 0 @ Q

stage fight_init = {
init : fight_screen -o gen_monster * fight_in_progress.
gen_a_monster : gen_monster * monster_size Size
-o monster Size * monster_hp Size.

The predicate spoils is initialized to 0 (2).

A monster is generated and inserted into the FB.

Then, we enter the fight loop .

~ ceptre 2.pdf
eoce M Page 5 of 7 O a @

G
)
m]
©

stage fight_auto = {
fight/hit
: try_fight * $fight_in_progress * monster_hp MHP * $weapon_damage D
* subtract MHP D (some MHP’) -o monster_hp MHP’.

win
: fight_in_progress * monster_hp MHP * $weapon_damage D
* subtract MHP D none -o win_screen.

fight/miss
: try_fight * $fight_in_progress * $monster Size * health HP
* subtract HP Size (some HP’) -o health HP’.
die_from_damages
: health z * fight_in_progress -o die_screen.
fight/die
: try_fight * fight_in_progress * monster Size * health HP
* subtract HP Size none -o die_screen.

}
ece M- :F::gpcn;eo'z;pdf ®© aa m 2 - 0 6
qui * stage fight_auto * $fight_in_progress -o stage fight * choice. Reverse-engineering this code is overly
qui * stage fight_auto * $win_screen -o stage win. .
difficult.

qui * stage fight_auto * $die_screen -o stage die.

stage fight = { The code conflates several issues.
do_fight : choice * $fight_in_progress -o try_fight.
do_flee : choice * fight_in_progress -o flee_screen.

) I've broken this down into 3 layers.

#interactive fight.
qui * stage fight * $fight_in_progress -o stage fight_auto.

qui * stage fight * $flee_screen -o stage flee.

Structured programming emphasizes “narrow waist” and “narrow neck” (1 in, 1 out).

This code is like unstructured GOTO programming, spraying control-flow logic across several layers using “flags” (predicates).

Here, we have 1 message in, 1 reaction out. (N.B. not one datum out, but one reaction out. A reaction might be composed of 0

or more output events).

In the above sketch, it looks like “fight auto” has 5 outputs, but, only one of them fires in response to an input. In this case, one

reaction is composed of one event (message).

N.B. When 1 output llres, t!e ot!er ! oulpuls pro!uce nol!mg. ‘!ol nl|, no! Llse . nol!mg, no event w!atsoever.

When “hit" is fired, the monster’s health is reduced and we loop back for more fighting.

When “miss” is fired, the player’s health is reduced and we loop back for more fighting.

In the other 3 cases, the fighting loop is terminated and we restart (cold or warm appropriately).

ece M- ceptre 2.pdf ® Q@ a M 2|l o ® Q-

stage fight_auto = {
fight/hit
: try_fight * $fight_in_progress * monster_hp MHP * $weapon_damage D
* subtract MHP D (some MHP’) -o monster_hp MHP’.

win
: fight_in_progress * monster_hp MHP * $weapon_damage D
* subtract MHP D none -o win_screen.
fight/miss
: try_fight * $fight_in_progress * $monster Size * health HP
* subtract HP Size (some HP’) -o health HP’.
die_from_damages
: health z * fight_in_progress -o die_screen.
fight/die
: try_fight * fight_in_progress * monster Size * health HP
* subtract HP Size none -o die_screen.

0@ ([ceptre2pdf ® aa f 2 - 0o o Q-

qui * stage fight_auto * $fight_in_progress -o stage fight * choice.
qui * stage fight_auto * $win_screen -o stage win.
qui * stage fight_auto * $die_screen -o stage die. "Fight auto” weeds out the Iow—hanging

stage fight = { fruit - player dead, monster dead, then asks

do_fight : choice * $fight_in_progress -o try_fight. the user how to proceed and punts to
do_flee : choice * fight_in_progress -o flee_screen.

} "fight step”.

#interactive fight.

qui * stage fight * $fight_in_progress -o stage fight_auto.
qui * stage fight * $flee_screen -o stage flee.

ece M Soruezpd @ aa®m 2 - d 6 Q
stage fight_auto = {
fight/hit
: try_fight * $fight_in_progress * monster_hp MHP * $weapon_damage D

* subtract MHP D (some MHP’) -o monster_hp MHP’.

win
: fight_in_progress * monster_hp MHP * $weapon_damage D
* subtract MHP D none -o win_screen.
fight/miss
: try_fight * $fight_in_progress * $monster Size * health HP
* subtract HP Size (some HP’) -o health HP’.
die_from_damages
: health z * fight_in_progress -o die_screen.
fight/die
: try_fight * fight_in_progress * monster Size * health HP
* subtract HP Size none -o die_screen.

eo0e ([feptrezpdf ©aad 200 “
qui * stage fight_auto * $fight_in_progress -o stage fight * choice.

qui * stage fight_auto * $win_screen -o stage win.
qui * stage fight_auto * $die_screen -o stage die. “Fight step” figures out one step in the

fight | :
stage fight = { 'ghtloop

do_fight : choice * $fight_in_progress -o try_fight.

do_flee : choice * fight_in_progress -o flee_screen. We piCk a hit or a miss at random, then
¥ determine if this hit kills the monster
#interactive fight.
qui * stage fight * $fight_in_progress -o stage fight_auto. (player wins), or just weakens the

i % i * - . ; : c
qui * stage fight * $flee_screen -o stage flee monster, or, if the miss kills the player or

just weakens the player.

Code Layer Flee

or;

0@ [Coptrezpdf @ aa h 2 - 0 60 = as

Page 5 of 7

stage flee = {
% lose spoils
do/flee : flee_screen * spoils X * monster

-0 Q).

* monster_hp _

}

qui * stage flee -o stage main * main_screen.

B e e

If the player flees the fight without conquering the monster, all spoils are removed, and, the monster is

removed before going back to the main loop.

i el
aduck
“, . «:ﬁ A—a@w ece M- T ®aam 2-d06 = a

go_home_or_continue : pred.
stage win = {
win : win_screen * monster Size * drop_amount Size Drop

T 9e ‘
T, cont s

-o drop Drop.
collect_spoils : drop X * spoils Y * plus X Y Z
-0 spoils Z * go_home_or_continue.

go_home : go_home_or_continue
* spoils X * treasure Y * plus X Y Z
-0 treasure Z * main_screen.
continue : go_home_or_continue -o fight_screen.
}
#interactive win.
qui * stage win * $main_screen -o stage main.
qui * stage win * $fight_screen -o stage fight_init.

The player is required to choose 3 times. (1) "win”, (2) “collect_spoils”, then (3) “go_home" or “continue”.

If the player chooses “go_home”, the player's $ (treasure) is calculated and inserted into the FB before

restarting.

Code Layer Die
-

C(le. X cold

cheredd aduch
,ﬁqui%’;é”%l,
Tiveded® il ¢ end

A

ceptre 2.pdf
Page 5 of 7

eoe @M~

stage die
quit :
restart

die_screen -o end.
: die_screen * monster_hp _

* spoils _ * ndays
* weapon_damage

_ * treasure
-0 init_tok.

}

#interactive die.

The player gets to choose “quit” or “restart” (both rules are always enabled at the same time)

If the player chooses “restart”, then we delete several predicates - die-screen, monster hp,

spoils, ndays, treasure, weapon damage - and do a cold start.

paultarvydas@gmail.com

https://discord.gg/TnzEtPeAzN (Programming Simplicity Discord (everyone welcome))

blog: https://guitarvydas.github.io/

blog (2022-2023): https://publish.obsidian.md/programmingsimplicity/

mailto:paultarvydas@gmail.com
https://discord.gg/TnzEtPeAzN
https://guitarvydas.github.io/

	Ceptre -Walkthrough of the Dungeon Crawler Example
	The Paper
	Agenda
	Ceptre Basics
	Initially
	First Transition

	Game Design Intent
	Layers Init and Main
	Layers Rest and Shop
	Layer Adventure
	Layer Fight
	Layer Fight Auto
	Layer Fight Step
	Layer Flee
	Layer Win
	Layer Die

	Ceptre Code
	Code Layers Init and Main
	Code Layer Rest Stage
	Code Layer Shop Stage
	Code Layer Adventure
	Code Layer Fight Loop
	Code Layer Fight Auto
	Code Layer Fight Step
	Code Layer Flee
	Code Layer Win
	Code Layer Die

