
Based on the paper: Ceptre: A Language for
Modeling Generative Interactive Systems

CEPTRE
-WALKTHROUGH OF
THE DUNGEON
CRAWLER EXAMPLE

Paul Tarvydas

https://www.cs.cmu.edu/~cmartens/ceptre.pdf

Source code for a more involved version of RPG:

https://github.com/chrisamaphone/interactive-lp/blob/master/examples/rpg.cep

The Paper

https://www.cs.cmu.edu/~cmartens/ceptre.pdf
https://github.com/chrisamaphone/interactive-lp/blob/master/examples/rpg.cep

Agenda

I view the code from the perspective of thinking of Ceptre as a language for writing practical
gaming software, instead of as a way to formally analyze the required operations.

I will look at only the bits of code circled in red.

Ceptre uses formal logic (“linear logic”, “multiset rewriting”)
to describe low-level operations and higher-level
operations.

Ceptre uses the same syntax throughout.

Ceptre

Ceptre operates on one stage at a time.

It finds enabled rules, then applies one rule to the factbase.

The choice of which rule to apply is nondeterministic. If the rule is marked “interactive”, then the player gets to choose which
rule to apply, else, the system chooses a rule randomly.

This process repeat until no rules are enabled, i.e. the stage is “quiescent”.

Higher level rules can match for a quiescent stage using the qui operator.

Ceptre code

Initially

damage (sword, 4)
cost (sword, 10)

stage (init)
init_tok

max_hp (10)

Caption

Ceptre code stage init

init_tok removed

New predicates added

weapon_damage (4)

heath (10)
treasure (0)
ndays (0)

damage (sword, 4)
cost (sword, 10)

stage (init)max_hp (10)

Init rule I

When no more rules can be enabled
(matched), insert qui into the factbase.

weapon_damage (4)

heath (10)
treasure (0)
ndays (0)

damage (sword, 4)
cost (sword, 10)

stage (init)max_hp (10)

qui

Qui

Caption IF state (init) IS quiescent then {

 Remove stage (init) from FB
 Remove qui from FB

AND

 Insert stage (main) into FB
 Insert main_screen () into FB

}

First Transition

weapon_damage (4)

heath (10)
treasure (0)
ndays (0)

damage (sword, 4)
cost (sword, 10)

stage (main)

max_hp (10)

main_screen

Caption

Game Design Intent
The game used in this example is quite simple, as far as games are concerned. The intent behind this example is to show
a various techniques for designing games..

The following pages are freehand sketches that give my best understanding of the design of the game. I choose to
explain the design using a set of layers.

Later, I will describe the Ceptre code in terms of these sketches.

Legend:

• p.ok is the player’s health, when it drops to 0, the player dies and the game can be restarted afresh, referred to as the
predicate ‘health N’ in the Ceptre code

• p.$ is the player’s money, referred to as the predicate ‘treasure N’ in the Ceptre code

• p.pwr is the player’s weapon’s power, referred to as the predicate ‘weapon_damage N’ in the Ceptre code

• spoils is the $’s awarded to the player for defeating a monster,

• ndays is a score - the “number of days” that have transpired in the game

• m.ok is the monster’s health in a fight, when it drops to 0, the player wins the fight, referred to as the predicate ‘health
N’ in the Ceptre code

• m.pwr is the amount of damage a monster can inflict in one blow to the player in a fight, referred to as the predicate
‘monster Size’ in the Ceptre code

• m.$ is the amount rewarded to the player when the monster m has been vanquished, referred to as the predicate
‘drop_amount Size Drop’ in the Ceptre code

• z is zero (Church numerals are used in some of the bwd predicates in the larger rpg.cep code).

Layers Init and Main

The game begins with a cold start - some variables are
initialized, then the main loop is entered.

The player must choose from 4 courses of action “adventure”,
“shop”, “rest”, “quit”.

When the player wins or dies, the game begins again with a
cold start, and, in all other cases, the loop repeats without
reinitializing the top-level variables.

Layers Rest and Shop

If the player chooses “rest”, the
player’s health is restored to a
maximum value, but, 1 day is lost.

If the player chooses “shop”, the
player is given the option to exchange
some $’s for more powerful weapons,
if the player has enough $s. The
player can leave the shop at any time.

Layer Adventure

Adventure kicks off a round of fighting. The amount of $’s to be collected when the player wins a
battle, is reset and a new monster is generated, then the fight loop is entered.

The adventure can end in one of 3 ways

• The player wins the game (all monsters have been vanquished)

• The player loses the game (‘dies’)

• The player flees from the current battle and foregoes all winnings in a given round of fighting, the
game continues with a warm start.

Layer Fight

Fight runs the fight loop by repeatedly calling invoking “fight auto” and performing
health decrements as required.

Layer Fight Auto

Fight auto runs the fight loop.

Fight auto returns 1 of 5 possibilities: a hit value, a miss value, a die event, a win event, a flee event.

Layer Fight Step

Fight step picks a hit or a miss at random, then produces a “win” or “hit value” event, or, produces a
“die” or “miss value” event.

Layer Flee

The player foregoes all $’s dropped by the monster and goes back to the main loop.

Layer Win

The player has slayed one monster and the player is given a choice of going back to
the main loop or fighting another monster.

Layer Die

The player lost the game (player’s health has dropped to 0). The player can play again
or quit the game.

Ceptre Code

The following section examines the actual code presented in the paper and
compares it with the Design Intent.

Caption

Code Layers Init and Main

In the main loop of the game, four rules are (always)
enabled, since each rule consumes a main_screen
predicate.

The player is asked to pick one of the rules.

The rules simply drop “screen” predicates into the FB
(factbase). The stage becomes quiescent. Upper-level
logic then determines which transition to take.

Rest stage and shop stage

Code Layer Rest Stage

In stage rest, player’s health recharges, but, ndays is incremented

Cplus predicate

Logic Variables

HP
Max

Recharge
N

NDAYS

 N := max (Max, HP + Recharge)
FB += health (N)
FB += ndays (NDAYS + 1)

Rest stage and shop stage

Code Layer Shop Stage

In stage shop, the player can buy more weapon power, if the player
has enough $.

Definition of subtract {
 T - C = +ve integer or 0
 T - C = none otherwise
}

The rule ‘buy’ is enabled only if
the player has enough $, ie.
(some T’) is not none.

let T = p.$ in
 let W = any weapon (retry-able)
 let C = cost of the given weapon
 let D = power of the given weapon
 If a weapon can be found that satisfiesT-C >=0 then
 enable {
 prompt “buy”
 remove treasure predicate with value T
 remove cost predicate with values W and C
 remove damage_of predicate with values W and D
 remove weapon_damage predicate without regard for its value
 insert treasure T’ where T’=T-C
 insert weapon_damage D (effectively overriding previous weapon_damage)
 }

Code Layer Adventure

The predicate spoils is initialized to 0 (z).

A monster is generated and inserted into the FB.

Then, we enter the fight loop .

Code Layer Fight Loop

Reverse-engineering this code is overly
difficult.

The code conflates several issues.

I’ve broken this down into 3 layers.

Structured programming emphasizes “narrow waist” and “narrow neck” (1 in, 1 out).

This code is like unstructured GOTO programming, spraying control-flow logic across several layers using “flags” (predicates).

Here, we have 1 message in, 1 reaction out. (N.B. not one datum out, but one reaction out. A reaction might be composed of 0
or more output events).

In the above sketch, it looks like “fight auto” has 5 outputs, but, only one of them fires in response to an input. In this case, one
reaction is composed of one event (message).

When “hit” is fired, the monster’s health is reduced and we loop back for more fighting.

When “miss” is fired, the player’s health is reduced and we loop back for more fighting.

In the other 3 cases, the fighting loop is terminated and we restart (cold or warm appropriately).

N.B. When 1 output fires, the other 4 outputs produce nothing. Not nil, not false - nothing, no event whatsoever.

Code Layer Fight Auto

“Fight auto” weeds out the low-hanging
fruit - player dead, monster dead, then asks
the user how to proceed and punts to
“fight step”.

Code Layer Fight Step

“Fight step” figures out one step in the
fight loop.

We pick a hit or a miss at random, then
determine if this hit kills the monster
(player wins), or just weakens the
monster, or, if the miss kills the player or
just weakens the player.

Code Layer Flee

If the player flees the fight without conquering the monster, all spoils are removed, and, the monster is
removed before going back to the main loop.

Code Layer Win

The player is required to choose 3 times. (1) “win”, (2) “collect_spoils”, then (3) “go_home” or “continue”.

If the player chooses “go_home”, the player’s $ (treasure) is calculated and inserted into the FB before
restarting.

Code Layer Die

The player gets to choose “quit” or “restart” (both rules are always enabled at the same time)

If the player chooses “restart”, then we delete several predicates - die-screen, monster_hp,
spoils, ndays, treasure, weapon_damage - and do a cold start.

paultarvydas@gmail.com

https://discord.gg/TnzEtPeAzN (Programming Simplicity Discord (everyone welcome))

blog: https://guitarvydas.github.io/

blog (2022-2023): https://publish.obsidian.md/programmingsimplicity/

mailto:paultarvydas@gmail.com
https://discord.gg/TnzEtPeAzN
https://guitarvydas.github.io/

	Ceptre -Walkthrough of the Dungeon Crawler Example
	The Paper
	Agenda
	Ceptre Basics
	Initially
	First Transition

	Game Design Intent
	Layers Init and Main
	Layers Rest and Shop
	Layer Adventure
	Layer Fight
	Layer Fight Auto
	Layer Fight Step
	Layer Flee
	Layer Win
	Layer Die

	Ceptre Code
	Code Layers Init and Main
	Code Layer Rest Stage
	Code Layer Shop Stage
	Code Layer Adventure
	Code Layer Fight Loop
	Code Layer Fight Auto
	Code Layer Fight Step
	Code Layer Flee
	Code Layer Win
	Code Layer Die

