
Connections Are Triples

The connections (green) belong to the outer layer (green) not
the inner components (black). Example: the left-most
component creates 2 outputs. The top output is fed into the
input of the 2nd component, but, the left-most component
doesn't know that this is the case. Only the green component
knows that the left-most component is wired to the 2nd
component. Some other Container (green') might wire the
components together in a different way. This lets you shuffle
the architecture by simply replacing the green component
(say, with green''). The left-most component doesn't have
knowledge of the 2nd component hard-wired into its code,
hence, remains flexible. UNIX pipes are like that, but use of

1

textual syntax ("|") makes it hard to express combinations
like above. The diagram can be expressed in UNIX but I find
the diagram to be instantly obvious. You can't write the
diagram with only functions, you need 0D to give you the
freedom to move wires around. If you use only functions,
without 0D, then you end up having to specify an ordering of
execution.

Components have named inputs and outputs, but, Leaves
cannot refer to inputs and outputs of other components.
Container components can only refer to inputs and outputs
of their direct children. Container components can contain
other components, Leaf or Container, and, provides all
routing between children (the children cannot do routing of
their own messages). A routing connection is a triple
{direction, {src-instance:pin-name}, {receiver-instance:pin-name}}.
Most drawing tools assume that a routing connector is a
double, not a triple. The Mermaid sample drawing
encourages the use of doubles, not triples. The current
version of Odin0D does this correctly, but, optimizes a the
triple to be { direction, {src-instance:pin-name}, {receiver-
queue:pin-name}}. A system of components can be optimized
to hard-code routing, but, in general this is not flexible
enough. Optimization destroys scalability for the sake of
“efficiency”.

2

In function-based programming language, you write ‘f(x)’
which hard-wires a call to ‘f’ into the code. This reduces
flexibility.

3

See Also
References https://guitarvydas.github.io/
2024/01/06/References.html

Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/
programmingsimplicity

Videos https://www.youtube.com/
@programmingsimplicity2980

[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/
paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas
https://leanpub.com/u/paul-tarvydas

