
Design vs. Type 
Checking 



What I Want to Say 

What I Have to Say Instead 



Type Checking Obfuscates 
Design 
• Including enough niggly details for 

commanding a dumb machine makes code 
look “too busy” to humans.


• The Designer wants to say “N”, with the 
implication that N is an int and arrives as part 
of the incoming message.


• Instead, the Designer is forced to write 
detailed gobbledy-gook to appease the type 
checker, such as msg.datum.data.(int) 

• The Designer should be allowed to express the 
Design in a concise manner, then, punt to a 
Production Engineer to add sufficient details


• Provenance must be maintained. Whatever the 
Production Engineer does, must be tracked 
back to what the Designer wrote/intended, in 
some way.


• There should be multiple views of the code - 
the Design View, and, the Production 
Engineering View.


• How can we accomplish this? 



Lisp and Macros 
• Lispers solve this kind of problem by creating 

macros to hide-away overly-busy details.

• Lispers don’t delete the details, they just 

mask the details.

• In essence, a Lisper can view the code in 2 

ways (1) view the original code with details 
hidden behind macros, and, (2) view the 
code with macros expanded, to see all of the 
niggly details.


Functional Programming vs. 
Macros 

• Functional programming essentially results in 
macros - a mapping of text to some other 
text.


• All of the “rules” of Functional Programming 
support creating maps, e.g. “no side effects”, 
“referential transparency”, etc.


• But, the “rules” of Functional Programming 
bring ad-hoc baggage into programming, like 
ad-hoc blocking (a function blocks when it 
calls another function), hard-wiring names of 
other functions into code at the call point, 
ad-hoc routing decisions (a called function 
must always route its result back to the 
caller), etc.




Macros for Non-Lisp 
Languages 
• PEG - Parsing Expression Grammars - can be 

used to create macros for non-Lisp 
languages.


• Lisp macros work on Lisp lists, whereas PEG 
macros work with characters and text, i.e. 
more modern languages.


Can Macros Be Used to 
Map Between Design Views 
and Production Engineering 
Views? 
• Maybe, we want to say p -= N, where N = 
msg.datum.data.(int)?


• Would this be a step towards solving the 
Design vs. Production Engineering code 
disparities?


• Can we hide the where clause, so that 
Designers don’t have to see it nor specify it?


• Can we maintain provenance? I.E. can we 
switch between Design View and Production 
View automatically?



Programming Simplicity 
ohmjs.org


See Also 
References https://guitarvydas.github.io/
2024/01/06/References.html 

Blog https://guitarvydas.github.io/ 
Blog https://publish.obsidian.md/
programmingsimplicity 

Videos https://www.youtube.com/
@programmingsimplicity2980 

[see playlist “programming simplicity”] 
Discord https://discord.gg/Jjx62ypR 
X (Twitter) @paul_tarvydas 
More writing (WIP): https://leanpub.com/u/
paul-tarvydas 

http://ohmjs.org
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas
https://leanpub.com/u/paul-tarvydas

	Design vs. Type Checking

