
Programming Simplicity Laws of
Software
Development

Further reading:
https://guitarvydas.github.io/2023/12/29/
Fundamentals-of-Programming.html

https://guitarvydas.github.io/2021/04/20/Git-
Could-Do-More.html

The NiCad Clone Detector, Cordy, Roy

Inspiration:

An Orthogonal Model for Code Generation J.R
Cordy,

The Design and Application of a Retargetable
Peephole Optimizer, Davidson and Fraser

Inhale, Then Exhale

DRY

Separate Data Structures
From Control Flow

Input Parameters

Output Parameters
See Also
References https://guitarvydas.github.io/
2024/01/06/References.html

Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/
programmingsimplicity

Videos https://www.youtube.com/
@programmingsimplicity2980

[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/
paul-tarvydas

https://guitarvydas.github.io/2023/12/29/Fundamentals-of-Programming.html
https://guitarvydas.github.io/2023/12/29/Fundamentals-of-Programming.html
https://guitarvydas.github.io/2021/04/20/Git-Could-Do-More.html
https://guitarvydas.github.io/2021/04/20/Git-Could-Do-More.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas
https://leanpub.com/u/paul-tarvydas

Inhale, Then Exhale

1. Read, parse, infer, grok

WHAT? Figure out what is in the input, figure
out what else you need to know - infer
information from what you’ve been given.

HOW? OhmJS, relational languages, tables,
dictionaries, input validation.

2. Write, rearrange, reformat

WHAT? Once all of the information has been
gathered and categorized, output the data in a
useful format. Useful for whom? Useful for
humans? (Reports, etc.) Useful for machines?
(assembler, normalized code, etc.).

HOW? String interpolation, format(), fmt(),
printf(), report generator languages and DSLs,
create CSVs, create JSON, text-to-text

DRY
WHAT? Make exactly one (1) version of any
piece of code. The problem: making more than
one version, e.g. by using Copy/Paste, can
result in mysterious bugs when not all copies
have the same set of edits. Many projects start
out with Copy/Paste of code from other
projects. While easy to do at first, this results in
non-scalability later.

HOW? Abstraction,Parameterized Subroutines,
Parameterized Types.

Separate Data Structures
From Control Flow

WHAT? Don’t embed knowledge of how data
is structured in control flow code. For example,
if a datum represents the name of someone, don’t
treat the datum as a low level string, create methods
that expose useful functionality without exposing
the underlying representation, like .surname(), etc.

HOW? OOP for data. Methods for operations
on data. Syntax for control flow. Orthogonal
Programming Languages.

Output Parameters
WHAT? Don’t embed knowledge of other
functions in code. Calling other functions bakes
the names of the other functions into code at
the call-point, creating strong coupling and poor
scalability.

HOW? Don’t call functions directly, except built-
ins. If you need to call other functions, pass the
functions in as parameters (aka “dependency
injection”). Calling a function causes ad-hoc
blocking. Ideally, don’t call functions, just leave
data in an output queue (output parameters) for
further processing at some other time.

Danger: Abstraction and
parameterization usually obfuscate DI
(Design Intent)

Rhetorical question: why do programmers have
to deal with DRY, why don’t machines figure this
out for them? Why don’t our tools automatically
transform our COPY/PASTE code into DRY
code, or, highlight similar sections in some way?

A function call is actually four (4) operations:

1. create parameter bundle

2. invoke callee

3. determine if callee has terminated

4. extract output data from result bundle.

Current programming languages (Python, Rust, etc.)
wrap all 4 operations into one line, which is OK for
single-threaded apps, but results in accidental
complexity for distributed apps. Such languages
cause the caller to block until the callee has
terminated, then require the caller to unpack the
results immediately.

Input Parameters
WHAT? Incoming data, decoupled from sender.

HOW? Most popular languages already have
input parameters, called function parameters.
We don’t need to say much more about them,
here.

Danger: manually-applied DRY
destroys Locality of Reference, hence,
DRY obfuscates DI

	Laws of Software Development

