
PEG - Parsing
Expression
Grammars

PEG Is More Flexible Than CFG

PEG Is More Flexible Than REGEX

Compiler Building Is Easier with
PEG

PEG
PEG - Parsing Expression Grammars - provide a
fresh way to inhale text and to exhale the text
after processing and reformatting.

PEG is better at this than using CFGs, since
PEG can express grammars that contain
recursive, matched brackets.

PEG can express pattern-matches that include
matched pairs of brackets, recursively.

PEG is a DSL for building parsers, whereas CFG
is a DSL for expressing languages, with the side-
effect that CFGs can also be used to build
parsers, but, such parsers can’t be used to build
all of the parsers that PEG can build.

PEG can be used like REGEX is used, except
that PEG can match structured text, whereas
REGEX cannot. For example nested scopes,
such as

 int f (a) {
 b = a;
 {
 b = a + a;
 }
 }

Disadvantages of PEG
Many PEG libraries require that the code for
pattern-matching be intermingled with the code
for processing the matches (aka “semantics”).
This conflation obfuscates the original grammar.
See Ohm, though.

PEG specifications must, themselves, include a
lot of niggly detail, like matches for noise
characters, e.g. whitespace. See Ohm, though.

PEG specifications are usually longer than
REGEX specs. But, many people already think
that REGEXs are write-only, usually unreadable
except by the creator (and only then sometimes).
PEG specifications are more readable, but,
longer than REGEXs.

Some syntactic bugs cannot be easily detected
with PEG, like unbalanced brackets. This is
similar to the unterminated string problem that
occurs with CFG-based parsers. Can we just live
with this restriction? Can both technologies be
used in Production?

PEG uses backtracking. This used to be
considered a wasteful practice and was
verboten in the days of restricted hardware, e.g.
in the 1950s when CPU time was expensive and
memory was scarce. Today, these issues are no
longer concerns, our hardware is cheaper and
faster. We can use anything that makes our lives
simpler.

Ohm
Ohm addresses a number of the above issues.
Namely,

• Ohm separates grammar and semantics.

• Ohm grammars have a feature that removes

the need for specifying handling of noise
characters.

Note that the above features could be
implemented in any PEG, by writing DSLs (in
PEG, of course) to achieve the same
programming features of Ohm.

Note that Ohm is not the only way to address
the problems, but Ohm is a strong hint at what
can be accomplished.

OhmJS is a PEG-based language that works
with a popular, common underlying language -
JavaScript.

OhmJS is production quality and can be used in
production code and in browsers.

Using OhmJS and PEG does not mean having to
learn how to write compilers in a heavy-handed
manner.

OhmJS can be used like REGEXs are currently
used, and, opens up new vistas for how to solve
problems.

Language and Compiler
Building With Ohm

You can write a new language in only a few
hours by using Ohm as a t2t transpiler (text-to-
text transpiler - what the goal of FP really is).
Write a grammar, transpile the grammar to some
existing language, let the existing compiler do
the rest of the heavy lifting.

Programming Simplicity
ohmjs.org

https://guitarvydas.github.io/2024/02/05/T2T-
Transpilation-To-Write-A-Compiler-or-Not-To-
Write-A-Compiler.html

https://guitarvydas.github.io/2024/01/05/
Macros-for-Non-Lisp-Languages.html

https://github.com/guitarvydas/arith0d

https://github.com/guitarvydas/0D

Various other repos with names ending in “0d”
https://github.com/guitarvydas/*0d

See Also
References https://guitarvydas.github.io/
2024/01/06/References.html

Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/
programmingsimplicity

Videos https://www.youtube.com/
@programmingsimplicity2980

[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/
paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas
https://leanpub.com/u/paul-tarvydas
http://ohmjs.org
https://guitarvydas.github.io/2024/02/05/T2T-Transpilation-To-Write-A-Compiler-or-Not-To-Write-A-Compiler.html
https://guitarvydas.github.io/2024/02/05/T2T-Transpilation-To-Write-A-Compiler-or-Not-To-Write-A-Compiler.html
https://guitarvydas.github.io/2024/02/05/T2T-Transpilation-To-Write-A-Compiler-or-Not-To-Write-A-Compiler.html
https://guitarvydas.github.io/2024/01/05/Macros-for-Non-Lisp-Languages.html
https://guitarvydas.github.io/2024/01/05/Macros-for-Non-Lisp-Languages.html
https://github.com/guitarvydas/arith0d
https://github.com/guitarvydas/0D
https://github.com/guitarvydas/arith0d

	PEG - Parsing Expression Grammars

