
 Memory Layout
Cells and Atoms

 Sector Lisp and Lisp 1.5

 PROGRAMMING
SIMPLICITY

 Paul Tarvydas

Caption

Cover art uses https://upload.wikimedia.org/wikipedia/commons/archive/
1/15/20210331051741!Atomic_structure_of_Lithium-7.svg Under the CC license
https://en.wikipedia.org/wiki/Creative_Commons

Cover art uses Apple’s stock image for a Visual Textbook, “The Study of Cell Biology

https://upload.wikimedia.org/wikipedia/commons/archive/1/15/20210331051741!Atomic_structure_of_Lithium-7.svg
https://upload.wikimedia.org/wikipedia/commons/archive/1/15/20210331051741!Atomic_structure_of_Lithium-7.svg
https://upload.wikimedia.org/wikipedia/commons/archive/1/15/20210331051741!Atomic_structure_of_Lithium-7.svg
https://en.wikipedia.org/wiki/Creative_Commons

Partition memory into 2 main chunks

Plus some space for left-overs

Memory Layout

Benefits of
Partitioning Memory
into 2 spaces
The main benefit is that it takes only 1 bit to tag each of the
memory spaces.

In this model, memory is treated as an array.

Indexing the array is done with integers.

CPUs incorporate efficient implementations of integers.

The top bit, the sign + or -, is used to flag the integers as
being positive or negative.

CPUs make it very efficient to test whether an integer is
exactly zero (0).

We can use these minor details to create very efficient
implementations of the memory array split into 2 types.
We can set aside index zero for some special purpose, if
we wish.

Let’s say that we want all positive indices (except 0) to
mean “list”, and, all negative indices to mean “atom”, and,
let’s use 0 to mean the special, frequently used, value NIL.

0

+ve

1

-ve

0 000000...000000

Zero

1 000000...000000

Zero

Aside: at the lowest level, CPUs treat RAM as
arrays of cells. Assembler programmers use the
word “pointer” to mean an index into the RAM
array. McCarthy, when he invented Lisp 1.5, used a
similar trick to what has been described above.
He simply treated all pointers as positive and
negative indices and divided all of memory up
into 2 spaces - cells and atoms - and reserved 0 as
a special value (nil).

Nil

Optimize by using index 0 to represent nil. Allocate List and Atom space
contiguously to avoid needing to check which space (List or Atom) an
index refers to. Indices must be adjusted such that 0 refers to the
boundary between the two spaces.

Instead of writing…
if (i >= 0) {
 v = ListSpace[i];
} else {
 v = AtomSpace[-i];
}

v = Space[i+adjust]

We can write…

Which boils down to less code and faster speed.

Allocating List
and Atom Cells

True functional programming notation treats all
memory in a stack-like manner.

When everything is a stack, you don’t need
Random Access heaps.

When you squint the right way at program
functions you can see that the functions’
parameters are on stacks. If a function creates
temporary values, those values are placed on the
stack, too.

A function’s stack is wiped out when the function
‘returns’. This operation is directly supported by the
CPU hardware, and, is very efficient. Any
temporaries created by the function are wiped out
on ‘return’. Parameters are wiped out, too, on
‘return’. Only the return value remains.

In the past, the return value was always made to fit
inside the CPUs’ registers. When we started
creating languages with larger, “non-scalar”, return

values, the return value couldn’t always be put into
registers, so various tricks were developed for
holding the return values. These tricks are carefully
managed by compilers.

Stacks, No Heap

Reclaiming List and Atom Cells

GC - Garbage Collection

Allocation in a strict stack-like manner
(no mutation, no heap) allows for
significantly simpler GC code.

abc

Hello

Goodbye

Atom Dictionary

Text atoms are never duplicated.

On input, text atoms are hashed into a dictionary. In
Lisp, text code is read in by “the reader” subroutine.

Actually, McCarthy used linear search instead
of hashing, but we can do better now.

N.B. in this super-simple representation, numbers
are not special and are simply “text atoms”. E.g. 42
is an atom with a 2-character name.

abc -1

Hello -2

Goodbye -3

-1

-2

-3

Atom Indices

Pointers are just indices.

We use -ve indices to represent Atoms.

So, an index points to an atom if the value is < 0.

Cons cells

Cons Cell

printed as “(1 . 42)”

printed as “(1)”

shorthand for “(1 . nil)”

(Lists)

car cdr

abstract

abc -1

Hello -2

Goodbye -3

-1

-2

-3

Lists
(abc Hello Goodbye)

-1

-2

-3 0

2

3

1

2

3

abc

Hello
Goodbye

0

printed

We use +ve indices to represent Atoms.

We reserve index 0 for a special use. CPU hardware
makes it very efficient to use and to test for 0.

So, an index points to a List if the value is > 0.

And, if the value is = 0, we treat it as a special value.

	Memory Layout
	Benefits of Partitioning Memory into 2 spaces
	Nil
	Allocating List and Atom Cells
	Stacks, No Heap
	Reclaiming List and Atom Cells
	Atom Dictionary
	Atom Indices
	Cons cells
	Lists

