
T2T Transpiling
To Write A Compiler or Not To Write A Compiler?

I think that it’s a waste of time to learn how to write compilers in the traditional
manner, unless you really want to understand how that is done. LLVM seems to
be the best way to write compilers “the old way”.

I learned about compilers before LLVM existed, so I haven’t bothered to track
down books on LLVM. I would be surprised if The Dragon Book is still a good
resource relative to newer offerings.

On the other hand, if all that you want to do is to write a new language, I strongly
advise using a text-to-text technology based on PEG parsing ideas. Don’t write a
compiler - we have lots of those already. Just write your new language and make
it produce code for one of the existing compilers, say, new-language->JavaScript.
JavaScript is OK, as long as you don’t have to use its syntax. Let a machine write
Javascript for you.

Using PEG technology instead of CFG-based technology, you can crank out
something in about an afternoon. I guess you’d need an additional several days
to come down the learning curve. I don’t remember ever being able to build a
CFG-based compiler/interpreter/transpiler in only a few hours nor even a few
days.

My favourite PEG technology is a tool called OhmJS. It comes with a REPL for
grammar-building called ohm-editor.

PEG is just an old technique cleaned up and formalized. It used to be called
“recursive descent”. PEG adds backtracking to this technique to make it wildly
easier to use.

The best pre-OhmJS technologies that I know of for writing MVIs of new 1

languages are TXL and Lisp. TXL was/is taught at Queen’s University in Kingston,

 MVI - Minimum Viable Implementation. Scrimp on efficiency instead of the product design, as 1

is suggested by MVP.

1

Ontario, Canada, and has been around a long time. TXL was using the buzz-word
“functional” long before “functional” became a buzz-word.

It looks like you could do a lot of this by just using REGEXs, but, if you try that,
you will end up in the weeds when you try to scale to anything more than a simple
line-based pattern match. Most popular programming languages are not line-
based, but use multi-line, structured text. PEG is better than REGEX and PEG is
easier than CFG. I would say to learn OhmJS , and, to only learn about CFGs and 2

REGEX and Parser Combinators if you are into self-flagellation.

 or other PEG, but, Ohm is better than all the rest of the PEGs I’ve seen2

2

In a 'real' Computer Science, the best languages of an era
should serve as 'assembly code' for the next generation of
expression.

Alan Kay on youtube - see 31:50 https://www.youtube.com/watch?3

v=fhOHn9TClXY&t=859s  

 Thanks to Rajiv Abraham for sending me this clip.3

3

https://www.youtube.com/watch?v=fhOHn9TClXY&t=859s
https://www.youtube.com/watch?v=fhOHn9TClXY&t=859s

Old way: write Yet Another Compiler.

New way: cheat, just write a grammar, then, convert incoming source code to an
already-existing language.

4

The “new way” isn’t that new, it’s simply been overlooked in the efforts to over-
complicate everything.

Step 1: learn how to write grammars.

Step 2: learn OhmJS .
4

Step 3: write a t2t transpiler.
5

Step 4: Stop here.  

 or other PEG, like ESRAP, peg.js, etc.4

 text-to-text5

5

A “compiler” isn’t all that special. It’s just a big program which has to work right.

A “compiler” is just a t2t transpiler itself. It transpiles “high level” source code
into “low level” assembler code.

Why is it easier to write t2ts in 2024 than it was in the 1950s?

PEG.

In the 1950s you had to hand-craft a recursive-descent parser, whereas in 2024
you can use Ohm to help you do this. In the 1950s, you had to learn about
language theory and CFGs and LR(k)s. That stuff is about language design, not
parser design. To build a full-blown, robust language, you will likely need to deal
with language theory, but, to fool around with creating a new language iteratively,
you don’t need all that stuff. Defer those details until you are satisfied with your
design, or defer until never.

I argue that deep-diving into over-complicated technologies, like CFGs, has
caused us to miss the obvious, low-hanging fruit, like parsing diagrams, instead
of only parsing text. In fact, I view all of Bret Victor’s Worry-Dream stuff as simple
pet tricks:

(1) Use syntax that goes beyond text, i.e. simple diagrams and glyphs and
graphics, and,

(2) Provide a REPL. Moving a slider to make a ball go back and forth is no
different from eval-ing a subroutine on the command line, except that the
former uses modern hardware.

Given XML, or SVG, and Ohm, it’s easy to parse diagrams. If you bolt a t2t onto
that workflow, you get a diagram-to-Javascript (or WASM, or LLVM, or Lisp, or
Python, or Haskell, or ...) transpiler.

If anyone is interested, I provide links to a sourdough starter and some simple
examples that are in my repo.

Warning: it’s actually disappointing and underwhelming. It’s not over-complicated
enough.

6

Disclaimer: although I’ve been using these ideas for decades, I’m still playing
around with the best way to package the ideas using existing, text-based tools.
YMMV.  

7

Examples

Hello World

https://github.com/guitarvydas/helloworld0d

8

https://github.com/guitarvydas/helloworld0d

VSH (Visual SHell)

https://github.com/guitarvydas/vsh0d

9

https://github.com/guitarvydas/vsh0d

ABC

Trivial example language that t2t transpiles to Javascript and Common Lisp

https://github.com/guitarvydas/abc0d

10

https://github.com/guitarvydas/abc0d

Arith

OhmJS’ arithmetic example that t2t transpiles to WASM, Python, Javascript and
Common Lisp

https://github.com/guitarvydas/arith0d

11

https://github.com/guitarvydas/arith0d

LLM

Simple use of an LLM (N.B. Steve Phillips is exploring how to use an LLM to do
t2t transpilation for creating a new programming language. This llm0d example
is, maybe, a stepping stone for that kind of work.

https://github.com/guitarvydas/llm0d

12

https://github.com/guitarvydas/llm0d

Delay

Example of how to deal with long-running processes, and, example of using
probes.

https://github.com/guitarvydas/delay0d

13

https://github.com/guitarvydas/delay0d

Starter

https://github.com/guitarvydas/0D

See README.md for instructions.  

14

https://github.com/guitarvydas/0D

WIP

Projects I’ve started, but mostly out of laziness, haven’t completed. I would be
glad to explain, help and kibitz if anyone else wants to dabble or to pick up and
continue.

Scheme to Javascript transpiler, diary in https://guitarvydas.github.io/2020/12/09/
OhmInSmallSteps.html .

Kinopio to markdown converter, then, to LLM, first cut in https://github.com/
guitarvydas/kinopio2md .

Markdown as a programming language syntax, prototype https://
guitarvydas.github.io/2023/09/24/Find-and-Replace-SCN.html .

Macros for non-lisp languages, WIP in https://guitarvydas.github.io/2024/01/05/
Macros-for-Non-Lisp-Languages.html .

PT Pascal compiler upgraded for 2024, WIP in https://github.com/guitarvydas/
ptpascal0d .

Dungeon Crawler game inspired by Ceptre, slides in https://github.com/
guitarvydas/ceptre/blob/jan17/presentation/Ceptre%20Walkthrough.pdf , WIP in
https://github.com/guitarvydas/ceptre/tree/jan17/dc0D (view with drawio) branch
“jan17”.

CL0D - rewrite of the 0D engine in a more recursive form, hoping to follow up by
“lifting” the rewrite to a meta syntax and using a t2t to create engines in Odin,
Python, Javascript, CL, etc. branch devcl0d https://github.com/guitarvydas/0D/
tree/devcl0d .

15

https://guitarvydas.github.io/2020/12/09/OhmInSmallSteps.html
https://guitarvydas.github.io/2020/12/09/OhmInSmallSteps.html
https://github.com/guitarvydas/kinopio2md
https://github.com/guitarvydas/kinopio2md
https://guitarvydas.github.io/2023/09/24/Find-and-Replace-SCN.html
https://guitarvydas.github.io/2023/09/24/Find-and-Replace-SCN.html
https://guitarvydas.github.io/2023/09/24/Find-and-Replace-SCN.html
https://guitarvydas.github.io/2024/01/05/Macros-for-Non-Lisp-Languages.html
https://guitarvydas.github.io/2024/01/05/Macros-for-Non-Lisp-Languages.html
https://github.com/guitarvydas/ptpascal0d
https://github.com/guitarvydas/ptpascal0d
https://github.com/guitarvydas/ceptre/blob/jan17/presentation/Ceptre%20Walkthrough.pdf
https://github.com/guitarvydas/ceptre/blob/jan17/presentation/Ceptre%20Walkthrough.pdf
https://github.com/guitarvydas/ceptre/blob/jan17/presentation/Ceptre%20Walkthrough.pdf
https://github.com/guitarvydas/ceptre/tree/jan17/dc0D
https://github.com/guitarvydas/0D/tree/devcl0d
https://github.com/guitarvydas/0D/tree/devcl0d

Appendix - See Also

References

https://guitarvydas.github.io/2024/01/06/References.html

Blogs

https://guitarvydas.github.io/

https://publish.obsidian.md/programmingsimplicity (see blogs
that begin with a date 202x-xx-xx-)

Videos

https://www.youtube.com/@programmingsimplicity2980

Books

leanpub'ed (disclaimer: leanpub encourages publishing books
before they are finalized - these books are WIPs)

https://leanpub.com/u/paul-tarvydas

16

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://leanpub.com/u/paul-tarvydas

Discord

https://discord.gg/Jjx62ypR

all welcome, I invite more discussion of these topics, esp.
regarding Drawware and 0D

Twitter

@paul_tarvydas

Mastodon

(tbd, advice needed re. most appropriate server(s))

17

https://discord.gg/Jjx62ypR

	T2T Transpiling
	To Write A Compiler or Not To Write A Compiler?
	Examples
	Starter
	WIP
	Appendix - See Also

