
2024-05-23 Working Paper - SWIB

Goal

See the first working paper “2024-05-22-WP Working Paper SWIB Syntax”

Step 5. Iterate Again, Revelation About Blocking

At this point, I have a framework for inserting Python SWIBs. The reader reads
input from a given file. The outputter requests strings and prints them on the
console. The middle component - Sampler_stubbed_out - contains nothing and is
just a pass-through.

I intend to replace Sampler_stubbed_out with Python code generated from another
diagram which contains a Receptor attached to a bunch of Python code.

Make runs this diagram and produces identity output given input from test.txt
which contains

La la la,
Hello World!
De de de

1

The diagrams in Step 4, led to further refinements and to two revelations. The
new diagram is

Here, the diagrams contains receptrons that have 1 input and 2 outputs. The
outputs are labelled yes and no (green and red, respectively). In some cases, e.g.
the grayed-out prefetch receptron, the no output is never used and does not
appear on the diagram. Hmm, since prefetch is a blocking operation, maybe it
can error out. Should I show a no output explicitly?

Note that the script boxes also have 1 input and 2 outputs, labelled similarly.

The revelations are:

1. Blocking can be specified explicitly as gray ovals and can be optimized to
prefetch the appropriate number of characters. At present, we must specify

2

the number explicitly. Later we will automate the calculation of prefetch and
obviate the need for explicit specification by the programmer. But, not yet.
First, we want to test that all of the appropriate bits and pieces of state are
being recorded in a useful manner.

2. Receptrons are drawn as ovals with 1 input and 2 outputs. They look like
States, but are more specialized. A receptron always has one control-flow
input and 2 control-flow outputs. States, on the other hand, can have a more
general structure, with several inputs and several outputs. What - if any - is
the relationship between receptrons and binary lambda calculus? Receptrons
have inputs and outputs that are units of control flow. The output of a
receptron is a pair of control-flow units yes/no. Binary lambda calculus
accepts input parameters that form a pair of functions - true/false, a function
to be executed when the true branch is fired and another function that is fired
when the false branch is fired. The output of a binary lambda calculus
function is another true/false pair of functions.

The revised textual form of the test program sampler.swib is now

⊢ Sampler ⊣

: Sampler ^=
 Stuff +1 _end

: Stuff ^=
 <<<
 +len("Hello World")
 [*
 | "Hello World": Hello
 | ⊥: _break
 | *: .
]
 >>>

: Hello ^=
 +len("Hello World")
 "Hello World"

I hand-compiled this to the following bytecodes (in file sampler.bytecode). Here,
an instruction consists of 3 parts:

3

1. An action opcode, always prefixed by @.

2. Exactly 2 arguments to the action.

3. A control flow code, always prefixed by ..

@script "Sampler" _ ..
 @enter "Sampler" _ .next
 @push-fresh-accumulator _ .next
 @call "Stuff" _
 @mark-yes _ _
 @prefetch 1 _ .next
 @peek-end _ _
 @mark-yes _ _
 @accept-and-append _ _ .next
 @send-accumulator ✓ _ .out
 @mark-no _ _
 @send-string "" ✗ .out
 @mark-end _ _ .out
 @mark-no _ _
 @send-string "" ✗ .out
 @mark-end _ _ .next
 @pop-accumulator _ _ .next
 @exit "Sampler" _ .quit
@end-script _ _ ..

@script "Stuff" _ ..
 @enter "Stuff" _ .next
 @push-fresh-accumulator _ _ .next
 @loop _ _
 @prefetch 11 _ .next
 @peek "Hello World" _
 @mark-yes _ _
 @call "Hello" _
 @mark-yes _ _
 _ _ _ .continue
 @mark-no _ _
 @send-string "" ✗ .break
 @mark-end .out
 @mark-no
 @peek-end
 @mark-yes
 @send-accumulator ✓ .break
 @mark-no _ _
 @accept-and-append _ _ .continue
 @mark-end _ _ .out
 @mark-end _ _ .out
 @mark-end-loop _ _ .next
 @pop-accumulator _ _ .next

4

 @exit "Stuff" _ .quit
@end-script _ _ ..

@script "Stuff" _ ..
 @enter "Stuff" _ .next
 @push-fresh-accumulator _ _ .next
 @prefetch 11 _ .next
 @peek "Hello World" _
 @mark-yes _ _
 @accept-and-append _ _ .next
 @send-accumulator ✓ _ .out
 @mark-no _ _
 @send-string "" ✗ .out
 @mark-end _ _
 @pop-accumulator _ _ .next
 @exit "Stuff" _ .quit
@end-script _ _ ..

The action opcodes can be one of

@script
@enter
@exit
@push-fresh-accumulator
@prefetch
@peek
@peek-end
@call
@accept-and-append
@send-accumulator
@send-string
@mark-yes
@mark-no
@mark-end
@loop
@loop-end.

The control-flow codes can be one of
1

..

.next

.out

.break

.continue

.quit

 This isn’t the first time that this has been tried. SNOBOL allows a next-line-number at the end 1

of each statement (“card”). SNOBOL uses the concept of generalized GOTO, whereas these
cfcodes have very specific (“structured”) meanings.

5

The first cfcode .. is a noop. The cfcode .out specifies a jump forward to the next
@end-mark, i.e. the bottom of a yes/no choice block. The binary receptrons -
@peek, @peek-end, and @call generate a yes/no choice. On yes, the next
instruction is the one following the @mark-yes action code, whereas on no, the
next instruction is the one following the @mark-no action code.

An argument is either a string, an integer, a yes/no port name ✓/✗ or a don’t care _.

Many of these symbols contain characters that are not legal in Python, so we’ll
just make everything strings for now .
2

For example, an instruction will look like:

[“@send-accumulator”, “✓”, “_”, “.out”]

This is “nice and regular”. It doesn’t need to be human-readable, just machine-
readable. No edge cases means that writing code for this should be easier.

An “instruction” is a list of 4 items - action, arg1, arg2, cfcode.  

 We can optimize later. OTOH, it may turn out that this all works “fast enough”, so we might 2

not need to waste any time optimizing.

6

Appendix - See Also

7

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Goal
	Step 5. Iterate Again, Revelation About Blocking
	Appendix - See Also

