
1

Paper
http://www.vpri.org/pdf/tr2011001_final_worlds.pdf

[paper reviewed on Oct. 14, 2021 by Toronto CS Cabal. The following are my notes
on this paper.]

Why Am I Attracted to this Paper?

Isolation
Objects in a world have no implicit dependencies on objects in other worlds.

PEG Makes This Easy
The ideas in this paper seep into many parts of a GPL (General Purpose

programming Language).
PEG - OMeta (ancestor of Ohm-JS) - makes it easy to rewrite the syntax of any

GPL, hence, making it easy to enact these changes.

Generates Ideas
I think that I originally saw this in the Ohm-JS thesis.

This shows what is possible when you elide details and "free your mind" to
think about higher-level concepts.

Worlds is not directly related to Ohm-JS, but springs forth as an idea of how
to use Ohm-JS to build new kinds of solutions to problems.

http://www.vpri.org/pdf/tr2011001_final_worlds.pdf

2

Overview of Paper
• Abstract

1. Introduction
2. Approach
3. Worlds by Example
4. Property Lookup Semantics
5. Implementation
6. Case Study #1 - Bitmap Editor
7. Case Study #2 - OMeta
8. Related Work
9. Conclusions, Future
10. Acknowledgements

• References

3

1 Introduction
"… An important class of problems have to perform speculations and

experiments, often in parallel, to discover how to proceed. …" [pt: I call this Design,
Brainstorming, Architecture, etc.)]

paraphrase: Try/Catch is a subset of undo. [pt: Kind of like Greenspun's 10th Rule
(for undo).]

Web surfing … back button … exploration …

"… This is somewhat similar to transactions …"

"… Worlds are first-class structures …"

[pt: I believe that every useful programming concept needs to be made explicit, e.g.
GC (garbage collection), OO, etc. Making something first-class in a language is but one
way to make concepts explicit. (GC is not usually first-class, OO objects are usually first-
class)]

2 Approach
Worlds realized in

• JavaScript
• Squeak (Smalltalk).

• Sprout a world (instantiate from prototype),
• make changes
• commit changes back to parent (if possible, see below for algorithm)
• field access

4

⁃ lookups
⁃ lookup in local scope
⁃ chain upwards through parents, if not found in local scope.

⁃ updates
⁃ always done locally
⁃ commit operation pushes changes to parent.

⁃ [pt: Is this similar to pre-CL Lisps and/or special variables in CL?
E.G."dynamic scoping"]

2.1 JS
A = thisWorld;
p = new Point (1, 2);

B = A.sprout ();
in B {
 p.y = 3
}

C = A.sprout ();
in C {
 p.y = 7;
}

C.commit ();

P.y is 2 in A, while p.y is 3 in B, while p.y is 7 in C.

P.y in A becomes 7 after commit.

2.2 Safety Properties
• No Surprises
• Consistency

5

3 Worlds by Example

3.1 Better Support for Exceptions

3.2 Undo for Applications

3.3 Extension Methods in JavaScript
• scoped methods

4 Property Lookup Semantics
• turnstile notation

5 Implementation

5.1 Data Structures
• WObject
• WWorld

WObject
Each slot of each object contains 2 fields:

• Reads
• Writes

[pt: We are accustomed to thinking of variables as containing exactly 1 field, but
WObjects contain 2 fields]

6

Each slot is characterized by
• don't know - '?'
• a value

WWorld
collection of WObjects

5.2 Slot Update
5.2 Update w.x.i
 5.2.1 (optimization) - create writes for x
 5.2.2 write v into w.x.i.writes

5.3 Slot Lookup
8-step algorithm, much like a flowchart

7

Components

8

First Cut Control Flow

9

Control Flow (black boxes)

overview

Control Flow Detail

10

11

5.5 Commit

Algorithm

Section 9 says that commit in the top-level is a no-op.

Successful Commit

12

13

Failed Commit

14

15

6 Case Study #1 Bitmap Editor

6.3 Flattening Optimization
Fig. 6 shows 3 sub-worlds, where "1" is drawn in sub-world-1, "2" is drawn in

sub-world-2 and "3" is drawn in sub-world-3.

In sub-world 3, the serifs are removed from the "1". This results in a few
changes to the bitmap, (seen as white squares) but leaves much of the bitmap
pixels in a "don't know" state.

The sub-world-3 bitmap is "flattened" to produce a Squeak-compatible bitmap
and to improve editor performance.

7 Case Study #2 OMeta + Worlds
OMeta is a PEG parser technology (which inspired Ohm-JS).

PEG uses backtracking to parse incoming grammars, e.g. (A | B) tries to parse
an A rule, if that fails, it backtracks and tries to parse a B rule.

Section 7 describes the experiment of replacing backtracking in OMeta with
Worlds.

The conclusion:

And thus, with very little additional complexity, worlds can be use to make the
use of side effects safer and easier to reason about in the presence of

16

backtracking.

8 Related Work
Touches on:

• STM
• revisions and isolation types
• GL programming language (snapshots of the store)
• Contextual values
• Us, COP (Context-Oriented Programming)
• FDS (Functional Data Structures)
• concurrency control

9 Conclusion
• Worlds/JS, Worlds/Squeak
• hardware-assist for Worlds?
• infinite undo?
• persistence?
• in-memory vs. network side effects?

17

Previous Versions of the Paper

VPRI RN-2008-001
Contains an Introductory graphic that might help motivation.

http://www.vpri.org/pdf/rn2008001_worlds.pdf

Does The Concept Meet My Expectations?

Meet Expectations?

The Worlds concept partially meets my expectations and shows future
promise.

Has the potential to subsume GC (Garbage Collection).

Scoped GC (ignoring commit).

Akin to UNIX® processes (which "clean up" when apps die). I like Worlds
and UNIX® processes (for isolation), but, also, see potential for further
improvement.

I see this as a basic technology that can be shaped (further scoped) to provide
multiple notations (languages).

Commit of many variables has the potential to break locality-of-reference.

http://www.vpri.org/pdf/rn2008001_worlds.pdf

18

Is the implementation easier/quicker if commit is dropped?

Is commit needed?

JS Global and Window
Javascript nearly meets the needs of creating worlds, because all JS variables

are contained in the global (node.js) object and the window (HTML) object.

For example
var x = 5;

is semantically equivalent to
var global.x = 5;

If we could change the value of global, we could create Worlds.

I think that the paper was based on the use of OMeta (PEG) to pre-process
code and to transpile Worlds-based-code into stock JS.

Future
Essence of idea might lead to isolation, and isolated components.

Restrict coupling only to ports, not all variables.

Might be easy to build in, say, JavaScript'. In JS, all variables belong to a
context, all variables are fields of a JS object { name:value, … }

Thought: implement separate worlds but drop commit. Would this be enough
to provide UNIX®-like isolation?

19

See Also
TXL (txl.ca) - functional language for parsing and rewriting syntax. TXL was

intended for exploring new languages (by modifying existing languages). [TXL
was later used for Y2K detection, tree-rewriting, etc.]

http://txl.ca

	Paper
	Why Am I Attracted to this Paper?
	Overview of Paper
	1 Introduction
	2 Approach
	2.1 JS
	2.2 Safety Properties

	3 Worlds by Example
	3.1 Better Support for Exceptions
	3.2 Undo for Applications
	3.3 Extension Methods in JavaScript

	4 Property Lookup Semantics
	5 Implementation
	5.1 Data Structures
	5.2 Slot Update
	5.3 Slot Lookup
	Components
	First Cut Control Flow
	Control Flow (black boxes)
	overview
	Control Flow Detail

	5.5 Commit
	Algorithm
	Successful Commit
	Failed Commit

	6 Case Study #1 Bitmap Editor
	6.3 Flattening Optimization

	7 Case Study #2 OMeta + Worlds
	8 Related Work
	9 Conclusion
	Previous Versions of the Paper
	VPRI RN-2008-001

	Does The Concept Meet My Expectations?
	JS Global and Window

	Future
	See Also

